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ABSTRACT

A new third-generation ocean wind wave model is presented. This model is based on previously developed
input and nonlinear interaction source terms and a new dissipation source term, It is argued that the dissipation
source term has to be modeled using two explicit constituents. A low-frequency dissipation term analogous to
wave energy loss due to oceanic turbulence is therefore augmented with a diagnostic high-frequency dissipation
term. The dissipation is tuned for the model to represent idealized fetch-limited growth behavior. The new model
results in excellent growth behavior from extremely short fetches up to full development. For intermediate to
long fetches results are similar to those of WAM, but for extremely short fetches the present model presents a
significant improvement (although the poor behavior of WAM appears to be related to correctable numerical
constraints ). The new model furthermore gives smoother results and appears less sensitive to numerical errors.
Finally, limitations of the present source terms and possible improvements are discussed.

1. Introduction

Modeling of the sea state has been in the center of
interest for half a century. After the pioneering work
of Gelci et al. (1956), ocean wave models are generally
based on a spectral energy or action balance equation.
In the past two decades international cooperation in
measurement and modeling projects like JONSWAP
(Hasselmann et al. 1973), SWAMP (SWAMP Group
1985), and SWIM (SWIM Group 1985) has greatly
increased our knowledge of the evolution of such wave
spectra. This focused research culminated in the de-
velopment of the WAM model (WAMDIG 1988).
This model is the first so-called third-generation model,
in which a spectral balance equation is integrated with-
out predefined spectral constraints. This approach has
lead to a model that is applicable in a broad range of
wave conditions, ranging from day-to-day average
wave conditions to hurricane conditions (see WAM-
DIG 1988). It furthermore allows for model improve-
ments at the elementary level of the parameterizations
of the physics involved. Previous first and second gen-
eration models leaned heavily upon assumed effects of
the physics. This implies that such models generally
require implementation-specific tuning and can gener-
ally be improved only by retuning.
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The essential processes governing wave growth are
all present in the relatively simple case of fetch-limited
growth in deep water without currents. In such condi-
tions, the balance equation for the two-dimensional
variance density spectrum of surface elevations F(f, )
can be written as

oF
3{ + ¢;* VxF = Suina + Su + Sas, (1)
ow
Cg = a , wi= gk,

where f(=w/2m) and @ are the spectral frequency and
direction, respectively; k is the spectral wavenumber;
and Syina, Sa, and Sy, represent source terms for wind—
wave interactions (also denoted as the input S;,), res-
onant wave—wave interactions, and dissipation, re-
spectively. For convenience of notation, the depen-
dence of the F and S on f and 0 has been neglected.
The WAM model originally used parameterizations of
Snyder et al. (1981), Hasselmann et al. (1985), and
Komen et al. (1984) for the above three source terms
(see WAMDIG 1988). More recently, Janssen (1989,
1991), Snyder et al. (1992), and Burgers and Makin
(1993) have proposed alternative source term param-
eterizations, and Janssen’s modifications have been im-
plemented in the most recent release of WAM (cycle
4). Modifications mostly concentrate on replacing the
empirical formulation of S,;,¢ of Snyder et al. (1981)
by more rigorous parameterizations. The dissipation
source term Sy, however, has not been studied in detail.
This source term represents the least known part of the
balance equation (1) and is generally used as the clo-
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sure term to tune WAM to represent predefined fetch-
limited growth behavior.

The present paper presents an alternative set of
source terms. Our wind—wave interaction source term
(section 2) is based on Chalikov and Belevich (1993),
and is similar to S.,4 as used by Burgers and Makin
(1993). The nonlinear interactions (section 3) are de-
scribed using the discrete interaction approximation
(DIA) of Hasselmann et al. (1985), as is used in
WAM. In developing our (new) dissipation source
term in section 4, we conclude that the dissipation pro-
cesses for frequencies around and below the spectral
peak are fundamentally different from those in the
equilibrium range of the spectrum. The latter high-fre-
quency dissipation applies to a part of the spectrum that
carries only a small fraction of the total wave energy.
It nevertheless needs to be modeled explicitly to avoid
that high-frequency dissipation processes dictate the
spectral shape of the dominant low-frequency dissipa-
tion term. We therefore divide the dissipation source
term in two constitaents: In the low-frequency regime,
we assume that S, can be described using an analogy
with dissipation of wave energy due to oceanic turbu-
lence. A diagnostic parameterization for the high-fre-
quency dissipation was obtained by assuming a quasi-
steady balance of source terms in the corresponding
regime. The resulting dissipation source term has sev-
eral tuneable parameters. These parameters have been
estimated by optimizing fetch-limited growth behavior
(section 5). The resulting growth behavior is illustrated
and discussed in section 6.

2. Wind-wave interaction

Computations of the statistical structure of the wave
boundary layer above monochromatic and multimode
surfaces, based on the 2D Reynolds equations (Chali-
kov 1980; Burgers and Makin 1993; Chalikov and Be-
levich 1993), indicate that the wind—wave interaction
source term Sy;.a can be parameterized as

Swind(fy 0) = ﬁWF(f’ 9)> (2)

where 8 is a nondimensional wind—wave interaction
parameter, which can be approximated as

c

—a,&2 — ay, @, < —1
a3‘;)a(a4&}a - 05) — g, -1 < L:)a < Q1/2
104ﬂ = ﬁ (614(:)“ - a5)a)a9 91/2 < (.:)a < Ql

aﬂ:}a — ag, Q] < (:)a < Qz

Q, < w,,

\09(‘;%; — 1)? + ay,
(3)
where

B, = 2 cos(6 — 6,)
g

(4)
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is the nondimensional frequency of a spectral compo-
nent, §,, is the wind direction, and u, is the wind ve-
locity at a height equal to the ‘‘apparent’” wavelength

N2
“ k| cos(6 —6,)|

The parameters a, — a,o and §2,, Q, in Eq. (3) depend
on the drag coefficient C, at the height z = \,:

2, = 1.075 + 75C,,
Q, = 1.2 + 300C,
a, = 0.25 + 395G,
a, = 0.35 + 150G,

(5)

as = (ap — a, — a;)/(ag — as + as)
as = 0.30 + 300C,,
as = a8,
as = ag(1 — as)
a7 = (as( ~ 1)* + a)/ (2, — )
as = a8,
as = 0.35 + 240C,,
a;o = —0.05 + 470C,,
ao = 0.25a%/a,. (6)

The behavior of the interaction parameter 8 has been
discussed in detail by Chalikov and Belevich (1993),
and is illustrated in their Fig. 1. The main features of
the present source term compared to empirical relation
of Snyder et al. (1981) are: (i) It becomes negative for
waves traveling at large angles with the wind or faster
than the wind. In such conditions the dynamic pressure
of the wind on the forward face of the wave component
exceeds the pressure on the backward face, resulting in
an energy flux from the waves to the wind. (ii) It results
in a 2 to 3 times smaller integral input of energy for
fully grown seas. This is partially due to the negative
growth rates of overdeveloped wave components and
due to relatively small growth rates for wave compo-
nents near full development. (iii) At high frequencies
it results in a larger energy input than Snyder’s relation
because for &, > 2, 8 of Eq. (3) is proportional to
2. This also implies that the differences in integral
input between the present source term and Snyder’s
relation becomes considerably smaller for young
waves. Note that the input of WAM cycle 4 is also
significantly smaller than the Snyder et al. relation for
mature waves (Komen et al. 1994, Fig. 3.2).

The energy flux from waves to wind is not present
in previous parameterizations of the input source term
and has several potential impacts compared to nonneg-
ative input parameterizations. (i) It might result in a
more narrow spectrum because the wave components
propagating under large angles with the wind obtain
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less energy and even may lose it. (ii) Similarly, nega-
tive input is expected to influence the response of the
spectrum to changes in wind direction. (iii) The loss
of energy for low-frequency waves might slow wave
growth for well-developed spectra and thus might con-
tribute to the reaching of an equilibrium between
source terms. (iv) The negative energy flux in the low-
frequency range is accompanied by a weakening of the
momentum flux from air to the sea. For sufficiently
developed wave spectra the sea surface may therefore
become very smooth.

The above approximation of § was compared with
observations of f collected by Plant (1982) in Chali-
kov and Belevich (1993, Fig. 2). It was shown that
scatter of the data can be explained by the dependence
of 8 on C,. The data also exhibits the quadratic depen-
dence of 3 on &, for large &,. Note, however, that it is
extremely difficult to obtain dependable observations
of 3, because of the difficulties of measuring the energy
flux to waves (Panchenko and Chalikov 1984; Chali-
kov and Makin 1990). The resulting scatter in observed
growth rates makes a direct validation of input source
terms virtually impossible (e.g., Hasselmann and Bos-
enberg 1991).

In the present source term the values of u, and Cy
are assigned at a height equal to the apparent wave-
length A,. Because the wind velocity and drag coeffi-
cient change with height, introduction of u, and C\
eliminates the uncertainty in choosing an arbitrary ref-
erence level, which is inherent to all previous schemes
for evaluating (3. This reduces the number of governing
parameters and follows the physics involved because
the thickness of the layer in which wind—wave inter-
action takes place becomes thinner with increasing fre-
quency (decreasing \).

Because the wind is usually defined at a given height
(h), uy and C, need to be derived as part of the present
parameterization of S,,q. It is well established now that
an overwhelming part of the wave-produced momen-
tum flux is formed in the high-frequency part of the
spectrum that is not resolved in most wave models. The
only way to take into account the form drag of the
waves therefore is to use an effective roughness param-
eter zp. Its value depends on the energy of high-fre-
quency wave components and for a JONSWAP spec-
trum is connected to the Phillips parameter « by the
relation

20 = xa'"L, (7
where £ = u%/g is the Charnock scale, and x is a con-
stant (0.15 < y < 0.25, we use x = 0.2 in our calcu-
lations) and u, is the friction velocity in air. Equation
(7) can be considered as a generalization of Charnock’s
relation (Charnock 1955) taking into account the sea
state. Excluding a thin surface layer adjusting to the
water surface, the mean wind profile is close to loga-
rithmic
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uz=51n(5), (8)
K 2o

where k = 0.4 is the von Kdrmdn constant. Combined
with Eq. (7) this expression can be rewritten in terms
of a drag coefficient C, = u3/u*(z)

C, = k*(R — In(C,))?, 9)
where
z8
R=In| — 10
n(x\/&f) (0

is a nondimensional parameter (see Chalikov and Be-
levich 1993). To complete the present parameteriza-
tion of Sying, an estimate for « is needed. Such an es-
timate could be obtained directly from the wave model.
However, such estimates are known to be somewhat
unstable. Furthermore, the relevant part of the spectrum
is often outside the discrete frequency range of the
spectrum. Alternatively, a can be estimated paramet-
rically from other parameters supplied by the wave
model. Following Chalikov (1995), C, can be esti-
mated from the phase velocity ¢, at the spectral peak
frequency f, as

C, = exp(0.074R, + 0.2345 In(R,) — 6.783).

u? [ u\3
ot ()"
8Z \Cp

This approximation completes our input source term.
For a given wind speed u and direction ,, at height h
the algorithm for the calculation of S,,;,q thus becomes:

1) Calculate C, from Egs. (12) and (11), estimating
¢, from the wave model.

2) Calculate z, from the drag coefficient C,. Using
Eq. (8) and the definition of Cj, z, becomes

(11)

(12)

20 = hexp(—«Cy'?). (13)

3) Calculate the apparent wave length A, using
Eq. (5).

4) Calculate the wind speed u, and drag coefficient
C, as

In(N\,/z0)
=y, —
(W 20)

2
C, = ch<ﬂ> .
LN

5) Calculate the nondimensional frequency @, from
Eq. (4).

6) Calculate 3 as function C, and &, using Eqgs. (3)
and (6).

7) Calculate the source term form Eq. (2).

(14)

(15)

3. Nonlinear interactions

The calculation of the nonlinear interactions for-
mally requires the evaluation of a six-dimensional
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Bolzmann integral, the computational effort of which
greatly exceeds economical limits for operational wave
models. Because the nonlinear interactions are gener-
ally recognized to play a crucial role in the process of
wave growth (e.g., Hasselmann et al. 1973), several
attempts have been made to develop economical pa-
rameterizations of S, (see Hasselmann et al. 1985). In
spite of this effort, only one economical parameteriza-
tion has proved adequate for application in a third-gen-
eration wave model. This is the discrete interaction ap-
proximation (DIA), developed by Hasselmann et al.
(1985). The DIA as implemented in WAM considers
mirror-symmetrical discrete interaction configurations
of four wavenumber vectors, where k; = k;, and k,
+ k, = k; + Kk,. Resonance conditions then require the
following relation between the corresponding frequen-
cies

Wy = W
ws = (1 + pw,
(16)

where p is a constant 0 < p < 1. The contribution 8S,,,,
to the source term S, at the wavenumber k,, in the above
resonance configuration is calculated analogous to the
exact interactions as (cf. WAM)

881 -2 F
6Sms | =D| 1 Cg—4f‘1[F%<_—3_4
5Snl4 1 (1 + AU/)

L F )_ F\F3F,
(1-w*) a-pt

where F, = F(f,, 8,), C is a numerical constant, and
D is a scaling factor to account for limited water depth
(expression not reproduced here). Note that Eq. (17)
implies a logarithmic distribution of frequencies and an
isotropic distribution of directions in the discrete spec-
trum as used in WAM [see Eq. (5.5) of Hasselmann
et al. (1985)]. The evaluation of (17) for resonance
configurations close to the highest and lowest discrete
frequencies in the spectrum requires spectral informa-
tion outside the discrete spectral range. For frequencies
lower than the lowest discrete frequency F(f, ) = 0
is assumed. For frequencies higher than the high-fre-
quency cutoff f., a power-law type spectrum is as-
sumed:

Wy = (1 - :u’)wla

], a7)

F(f.9) = F(f., 0><J§>m,

where m is typically assumed to be 4 to 5. We will use
m = 5, for which the one-dimensional spectrum %(f)
= [4F(f, 8)df corresponds to the JONSWAP spec-
trum. Equation (17) is evaluated for k; corresponding
to each discrete combination (f, #) in the discrete spec-
trum of the wave model and for some additional high

(18)
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frequencies, for which the interaction contributions at
k, fall within the discrete spectral space. The actual
source term is obtained by summation of all resulting
contributions.

This source term is tuned by selecting a number of
values for p and corresponding values for C. As sug-
gested by Hasselmann et al. (1985), WAM uses a sin-
gle interaction configuration defined by p = 0.25 and
C = 2.8 X 107. In this configuration, the DIA proved
successful as demonstrated by Hasselmann et al.
(1985) and by several years of successful operation of
many implementations of the WAM model. It does not,
however, reproduce the exact nonlinear interaction pre-
cisely, as is illustrated in Fig. 7 of Hasselmann et al.
(1985). The shift of energy to low frequencies is fairly
accurately described, but the DIA significantly over-
estimates interactions at frequencies above the spectral
peak frequency. This results in broader spectra with
higher energy levels in the equilibrium range (Hassel-
mann et al. 1985, Figs. 8 and 12). It furthermore has a
noticable impact on the spectral shape as will be illus-
trated below. To reduce the impact of the errors of the
DIA at high frequencies, its strength has been reduced
(C =1 X 107). This corresponds to a more even dis-
tribution of errors over the spectral domain. Effects of
this rescaling are discussed in section 7.

4. Dissipation

The dissipation source term describes loss of wave
energy due to wave breaking (‘‘whitecapping’’) and
turbulence in the oceanic boundary layer. The descrip-
tion of such processes in the energy balance equation
(1) is not straightforward, as both are discontinuous
and incorporate rotational motion contrary to other pro-
cesses in (1). Furthermore, the process of wave break-
ing and its governing parameters are still poorly un-
derstood. The dissipation source term is thus the least
known term in the balance equation, and is mostly used
as a tunable closure term.

Several parameterization for the dissipation source
term have been proposed. A review is given by Do-
nelan and Yuan (1994). Such source terms generally
assume that a single dissipation parameterization can
be applied throughout the spectrum. This dissipation
source term Sy (f, 8) is assumed to be quasi-linear in
terms of the spectrum F(f, ), because small changes
in the details of the spectral shape of swell or of the
peak of a wind sea spectrum cannot be expected to
influence the integral dissipation f [ Su(f, 6)dfde sig-
nificantly. Introducing a dissipation timescale Ty, the
source term becomes

Sas(f, 0) = T&'F(f, 0), (19)

where Ty, can be a function of the spectral coordinates
f and 6, environmental parameters like u,, and mean
wave parameters. These arguments appear solid for fre-
quencies around or below the spectral peak frequency.
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For higher frequencies, however, observations and sim-
ilarity considerations suggest the existence of a self-
similar shape of the one-dimensional frequency spec-
trum #(f ). This implies a quasi-steady equilibrium of
source terms (and advection), suggesting that Ty is a
function of the wave energy in a limited range of the
spectral space. As the high-frequency shape of the
spectrum furthermore is at best a weak function of the
fetch, mean wave parameters are not expected to sig-
nificantly influence T in the equilibrium range.

The above timescales for the spectral peak and lower
frequencies (denoted below as low frequencies) and
for the equilibrium range ( denoted as high frequencies)
are obviously incompatible. The dissipation source
term therefore has to consist of (at least) two constit-
uents. The parametric high-frequency tail, which in
WAM is applied for numerical reasons ( ‘‘disparities in
response timescales,”” WAMDIG 1988), might seem a
simple way to account for high-frequency dissipation
separately. However, a parametric tail fixes the shape
of the spectrum, but not the high-frequency energy
level «. This level then can only be influenced by the
frequency dependency of the explicit dissipation source
term. High-frequency dissipation thus still influences
the shape of the low-frequency dissipation. To avoid
this ‘‘cross-contamination,”’ the high-frequency dissi-
pation should be described explicitly (see also Banner
and Young 1994).

Our present knowledge of wave energy dissipation
is clearly insufficient to firmly define the two dissipa-
tion constituents. In this study, we will somewhat ar-
bitrarily assume that the low-frequency dissipation has
a form similar to the energy dissipation due to turbulent
viscosity in the oceanic boundary layer (section 4a).
Note that a turbulent dissipation term has been sug-
gested before by Duffy and Huang (oral presentation
at the eighth WAM meeting, Geneva Park, Canada,
1990). Our parameterization for high-frequency dissi-
pation (section 4b) is purely diagnostic and is designed
to be consistent with the occurrence of a power-law
behavior of the equilibrium range. In section 4c the
combination of these two constituents is discussed.

a. Low-frequency dissipation

A consistent approach to parameterize turbulent dis-
sipation of wave energy (Kitaigorodskii and Miropol-
skii 1968; Benilov and Lozovatskii 1977; Phillips
1977; Kitaigorodskii and Lumley 1983) is based on
representing velocity and pressure fields in the Navier—
Stokes equations as a sum of mean, potential (wave),
and turbulent components. If wave motion and turbu-
lence are not correlated, their interaction can be ac-
counted for by introducing an effective turbulent vis-
cosity coefficient K, which is a function of the vertical
coordinate z. This ‘‘eddy viscosity’’ reduces the kinetic
energy of the waves, and it is assumed that a mecha-
nism of mutual adjustment exists between the potential
and kinetic wave energy.

TOLMAN AND CHALIKOV

2501

A local rate of total kinetic wave energy dissipation
can be calculated as (Kitaigorodskii and Miropolskii
1968)

K - -2k
<5 @U‘I),-j> =2g ff K()K’F(f, 0)e *dfd,

(20)

where the summation convention is used and where ®;
= 0u;/0x; + 0u;/dx; is the strain tensor of the orbital
wave velocity i; angle brackets denote averaging over
time (or horizontal coordinates) to account for the en-
tire wave field. A spectral dissipation equivalent to (20)
requires integration over depth and is given as

Sass(f> 0) = 2K°F(f, G)J:) K(z)e *dz. (21)

Because most wave energy dissipation occurs in the
mixed layer of the ocean, effects of stratification of the
water column can be neglected. Dimensional consid-
erations then suggest that the vertical profile K(z) can
be represented as

K(z) ~ u,,JtK(% , g) , (22)

where K is a nondimensional eddy viscosity, 4 is a bulk
mixing length scale, and ¢ is a nondimensional param-
eter describing the development stage of the wave field
(typically the nondimensional peak frequency fu./g
or the nondimensional energy Eg?/uj). Considering
that the momentum and energy fluxes from the atmo-
sphere to the ocean are concentrated in the high-fre-
quency part of the spectrum, the bulk mixing scale & is
estimated as the equivalent wave height of the high-
frequency part of the spectrum

h=4(f:“

where f, is a frequency significantly higher than the
peak frequency of the windsea part of the spectrum (see
section 4¢). Introducing (22) into the integral in (21),
the effective eddy viscosity K, becomes

© 1/2
F(f, 0)dfd0> @
Iu

K, = kf K(z)e *dz
0 (24)

— ugh fo ) kK(i , §>e‘2"zdz = (),

where ¢ is a nondimensional function, which will be
estimated in section 5. The effective eddy viscosity thus
depends on the momentum transport from the atmo-
sphere to the ocean (uy ), the energy of high-frequency
waves (h), and on the development stage of the wave
field {$(€)]. The latter will allow for an indirect way
of accounting for the change of the ratio of the mixing



2502

length scale 4 to the penetration depth of the wave mo-
tion and for different ‘‘whitecap’’ intensities at differ-
ent stages of the wave growth. Substituting (24) in
(21), the low-frequency dissipation source term then
becomes

Sasi(f, 0) = —2uxhk>$(EF(f, 8).  (25)

Note that this dissipation disappears in the absence of
wind (u, = 0) and/or high-frequency waves (h
= 0) and hence is indirectly but strongly linked to the
input source term.

b. High-frequency dissipation

Presently, wave energy dissipation for high frequen-
" cies is poorly (if at all) understood, and no attempts
have been made to explicitly formulate this energy dis-
sipation. Moreover, the entire source term balance for
this part of the spectrum is less well known than that
" for low frequencies, because neither the wind—wave
interaction parameter 8 (Chalikov and Belevich 1993;
Burgers and Makin 1993), nor the nonlinear interac-
tions according to the DIA (section 3) are well estab-
lished in this spectral regime. We will therefore define
a diagnostic high-frequency dissipation, designed to re-
sult in a consistent source term balance for f— « when
combined with our other source terms. For simplicity,
the timescale Ty will be assumed to be directionally
isotropic. To be consistent with the parametric tail
needed to calculate S,; [Eq. (18) with m = 5], the high-
frequency dissipation should result in the correspond-
ing one-dimensional frequency spectrum

Hf) =ag?(2m)~*f 3, (26)

which corresponds to a Phillips or JONSWAP type
spectrum. To guarantee that the high-frequency dissi-
pation can result in such a spectral shape, we assume
that the timescale T, depends nonlinearly on «;

Ts' = Ala, ()17, (27)

where a(f) = F(f)f°g 2(2m)* is the. frequency-de-
pendent nondimensional energy level, normalized with
some universal representative energy level «,, and
where expressions for A and B still are to be deter-
mined. This formulation is equivalent to a nonlinear
dependence of the source term on the local steepness
k*F(f) and can therefore be loosely interpreted as a
local (in f-space) application of the dissipation source
terms as presently used in WAM.

The required form of A and B can be determined
from the spectral energy balance (1) at high frequen-
cies. Considering that effects of propagation are irrel-
evant for the high frequencies considered here, and in-
tegrating over the spectral directions, Eq. (1) implies

[sesr. 0=~ [ Sustr. )~ [ 500, 28)
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The source terms, and hence the timescales, scale with
the wind friction velocity uy. Defining the timescale
for arbitrary source terms S as T~' = [, Sdf/ [, Fd,
the nondimensional timescale T, = T,,g/us becomes

7~wcTs,lh ~ = ~\;i1nd - Ty (29)
The inverse timescale of the wind input scales with wf3
[Eq. (2)], which for high frequencies corresponds to
f3. The inverse timescale of the nonlinear interactions
scales with f ' F? [Eq. (17)], which in the tail corre-
sponds to f. The right side of Eq. (29) thus is domi-
nated by the input term for sufficiently high f, in which
case

Tgs,lh == ~»;i1nd = _aof3, (30)
where aj is a constant depending on the directional dis-
tribution inthe tail only and where the nondimensional
frequency f = fu,g~'. However, contributions of the
nonlinear interactions to Eq. (29) are generally not
negligible in the high-frequency range explicitly con-
sidered by a numerical wave model (roughly 21, < f
< 3f,). For several JONSWAP spectra with the direc-
tional distribution of Hasselmann et al. (1980) this is
illustrated in Fig. 1. Following modeling customs, the
directional distribution is kept constant for f> 2.5f,.
For igcreasing Jos T increases as « increases with A
and T scales with o? (within the parametric tail).
This dependence of the importance of the nonlinear
interactions on f, and « suggests the following expres-
sion for the timescale of the high-frequency dissipation

6 hd
u. Vi@ _.
8T o] 150 o011 N

4 b
x10 al 200 00134 S

4 [e] 250 o.0156 .

s
°r &
&
4
2 _P’
5‘;"‘*.~ oot "
74 hd
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1 F &;?;3&5*_4—-""
08:'3' ¥ o-0 -0
1 L 1 1 1
0.02 0.03 0.04 005 £y, 006
g
FiG. 1. Inverse nondimensional timescales 7' = u,/(gT) as a

function of the nondimensional frequency fu, /g for the input source
term (dotted lines) and the nonlinear interactions (dashed lines) for
several JONSWAP spectra with the directional distribution of Has-
selmann et al. (1980). Resulits for 1.75 < f/f, < 4 only.



NOVEMBER 1996

—
u, A
gT | / /
4 4 /a/
x10 / ,
4 ¢ /7
/ /A
k4 /
/7 P
N > A
/7 .
/{ %
2 7 A//A A
970 A7 -~
- -
-8 e
11— a —""
'a & -
s 2
—e
P
0 L | | ] 1
2 25 3 35 4
f/fp

FiG. 2. Inverse nondimensional timescales u,/(gT) as a function
of the nondimensional frequency f/f, according to Eq. (29) (symbols)
and Eq. (31) with a4 = 2.7, a, = 0.0017, a; = 2, and o, = 0.008
(dashed lines). Legend as in Fig. 1.

T&’Ts}h = —aofs[an(f)]B’ B = a]f“ﬂz’ (31)

where ay, a;, a, and the normalization energy level «,
have to be determined by tuning (see section 5). The
potential of this equation to describe the required dis-
sipation timescale (29) for sufficiently high frequen-
cies f/f, is illustrated in Fig. 2. Using the definition of
T, the corresponding source term becomes

Sasn(fs 0) = —%(E;) Fla(NOIPF(f, 6), (32)

B = al(-fﬂ>_az.
4

¢. Total dissipation

The total dissipation source term is defined here as
a linear combination of the above high and low fre-
quency constituents. Defining a transition zone to guar-
antee continuous behavior, the total dissipation be-
comes

Sas(f, 0) = ASusy + (1 — A) Sy (33)
1 for f<fi

oA = % for fi<f<pf (34)
0 for f,<f,

where <4 is defined by the highest (f;) and lowest fre-
quency (f;) of the transition zone and where Sy, and
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Sas,n are given by Eqgs. (25) and (32), respectively. To
enhance the smoothness of the model behavior for fre-
quencies near f;, a similar transition zone is used be-
tween the prognostic spectrum and the parametric high-
frequency tail as in Eq. (18)

F(fi,0) = (1 = B)F(f, 0)

fi

where i is a discrete frequency counter and which is
valid for nondecreasing discrete frequencies only, and
where B is defined similarly to .4, ranging from 0 to 1
between f, and f..

Furthermore, the frequencies f,, f5, f. and the inte-
gration bound f, in Eq. (23) have to be defined. In
idealized conditions such frequencies are usually de-
fined relative to the peak frequency f, of the spectrum
(Fig. 3). For a practical wave model with multimodal
seas, f, should be the peak frequency of the windsea.
Determining this frequency requires separation of swell
and windsea, which is not always straightforward. A
representative frequency for the peak of the windsea
spectrum in complex conditions can alternatively be
obtained from the input source term, which by defini-
tion covers actively growing spectral components only.
The numerical experiments of the following sections
have shown that the peak frequency of the wind input
and f, generally differ less than 5% for standard fetch-
limited wave growth. The peak frequency, however,
can still show discontinuous behavior for complex
spectra, which can be avoided by considering the mean
frequency of the positive part of Sy.¢. Furthermore,
weighing the input with £~ to bring the mean input

+ BF(fi_1, 6) (L‘—‘)m (35)

Pprognostic spectrum transition diagnostic tail

— v

F(f)

low-freq. dissipation

transition high-freq. dissipation A

Fic. 3. Frequencies relevant to the source terms and source term
integration (qualitatively) and the filter functions <4 (short dash) and
B (long dash). The solid line represents the spectrum. f, is the spectral
peak frequency, f; is the cutoff frequency between the deterministic
part of the spectrum and the parametric tail, f, is the integration bound
in the calculation of the turbulence scale 2 [Eq. (23)], and f; and f,
define the linear combination of low- and high-frequency dissipation.
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frequency close to the spectral mean frequency [ for
high frequencies [y Suina(f, 6)d6 = f> [, F(f, 6)d8,
see previous section], and defining the mean frequency
as an inverse mean period for increased numerical
smoothness (cf. WAM), our representative input peak
frequency f,; becomes

ffj?_g max[oa Swind(f’ 6)]dfd9

Joi = (36)
ff.f_A maX[O, Swind(f’ 9)]dfd6

The estimation of f,, f5, f., and f, in terms of f, ; (or f,)
should be considered as a part of the tuning process.
However, most frequencies can be estimated indepen-
dently, and the resulting model behavior proved fairly
independent of the values established below. We will
use

f-=3.00f,,
fi=175f,;
fa=250f,;
Jo =2.00f,,;. (37)

Note that the integration bound f;, is meant to represent
the frequency range in which the majority of the mo-
mentum transfer from atmosphere to ocean occurs. As
discussed above, f, is similar to f,. From a numerical
point of view, such an estimate of f, is not preferred as
the energy in the parametric tail tends to be noisy. It is
therefore preferable to use a lower estimate of f,. The
corresponding overestimation of 4 is automatically
compensated for in the empirical estimate of ¢.

The peak frequency is also used in Eq. (12). Con-
sistency requires that this relation is also expressed in
terms of f, ;. The numerical experiments of the follow-
ing section resulted in the following parametric rela-
tion:

f=36x107* 4+ 0.92f,, — 6.3 X 10793, (38)

which is valid for 0.008 < f,;, < 0.04. The first two
terms on the right side dominate for short and inter-
mediate fetches. In this regime, f, ; is virtually identical
to the mean frequency as defined in WAM. The right-
most term represents a correction for long fetches,
where the spectrum still can develop to lower frequen-
cies, but where the peak frequency of the input be-
comes systematically higher than the mean frequency
of the wind sea spectrum.

5. Tuning the source terms

To accommodate tuning, the present source terms
have been implemented in the third-generation wind
wave model WAVEWATCH (Tolman 1991, 1992).
This model was implemented to represent standard
fetch-limited test conditions of Eq. (1). The model has
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been tuned by modifying the free parameters in the
dissipation source term while leaving the input and
nonlinear interactions as described in sections 2 and 3.
The model is tuned to optimally represent the non-
dimensional total energy £ = Eg®uz* and the high-
frequency energy level a(f,) as a function of the non-
dimensional fetch & = xgu3?>. Scaling with uy was se-
lected because our source terms scale with u,.

Observations of fetch-limited wave growth have
been gathered and discussed by Kahma and Calkoen
(1992, 1994). For consistency with our model, u,
should include effects of wave-generated roughness.
Kahma and Calkoen (1994) present such growth
curves for stable stratification of the atmospheric
boundary layer, unstable stratification, and the com-
posite dataset. The first two datasets result in the fol-
lowing growth curves:

E=173x107%%, 2nf, = 3.087°%,
E=16x107%"% 2xf, = 4.737°%,

(39)
(40)

Note that £, is not used in the tuning process and hence
presents an independent check on model behavior. For
the energy level a no such detailed analyses are avail-
able. We have tuned the model to

a = 02955702, (41)

which was obtained from Hasselmann et al. (1973),
converting from u,, scaling to u, scaling by assuming
a = 0.0085 for ¥ = 107.

Due to the scaling behavior of the model, it is suf-
ficient to tune the model for a single wind speed. We
have arbitrarily selected u;; = 20 m s~'. The scaling
behavior, however, is potentially influenced by numer-
ical properties of the model, that is, the spectral, tem-
poral and spatial resolutions, and the propagation
scheme (see Tolman 1992). To minimize effects of the
spectral resolution, a relatively high spectral resolution
has been used (A f/f = 0.08 and A8 = 10°), and the
discrete frequency range is chosen so that f;.., > f. and
Juwin < 0.5f, for all spatial grid points. To minimize
effects of the temporal resolution, the dynamic source
term integration scheme of Tolman (1992) has been
used. Numerical errors related to the spatial resolution
are concentrated in the first few offshore grid points.
Therefore, the optimization is performed for two grids.
The first consists of up to 38 points with a spatial in-
crement Ax = 25 km, extending up to nearly full-
grown conditions. For the runs tuned to the stable strat-
ification data this includes all 38 grid points; for the
unstable data it includes approximately 15 points. The
second grid consists of 38 points with a spatial reso-
lution Ax = 2.5 km, covering small fetches only.
Fetch-limited growth behavior is expected to be fairly
insensitive to the numerical propagation scheme (Tol-
man 1992, Fig. 8). To improve stability and conver-
gence, we have used a simple first-order propagation
scheme.
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TaBLE 1. Optimization results for the high-frequency dissipation
source term (32) for the four basic test cases with «, = 0.002. The
row identified as ‘‘points’’ shows the counters of the grid points used
in the optimization.

Stable stratification Unstable stratification

Short fetch ~ Long fetch  Short fetch  Long fetch
Points 14-38 3-17 14-38 3-12
a, 1.80 2.19 1.50 1.55

The parameters to be tuned in our dissipation source
term are ¢ in Eq. (25) and ay, @, a;, and «, in Eq.
(32). Several of these parameters can be tuned objec-
tively given the parametric growth curves for £ and «.

Because the low-frequency dissipation acts on most
of the wave energy, its free function ¢ dominates the
evolution of E(%). Therefore, a local estimate ¢, can
be obtained for each spatial grid point by tuning £(X)
to Eq. (39) or (40). This tuning of ¢; has been per-
formed using a simple successive correction scheme
(equations not presented here). A parametric descrip-
tion of ¢ based on the local solutions ¢, is determined
as the last step of the optimization process.

The constant a, in the high-frequency dissipation
(32)is defined by Eq. (30). Using the definition of the
nondimensional timescale, and considering that g, is a
function of the directional distribution in the tail only,
a local estimate ay, of a, can be calculated for every
spatial grid point as

f Swind(fc’ 0)(10
Uy Vo

ao,l=fc_3’—‘

(42)
8

J;F(fc, 6)do

In the optimization, a, is kept constant along the fetch
and is estimated as the average of the local estimate ay,
along the fetch.

Given the above estimate of aq, the high-frequency
behavior of the model is governed by a,, a,, and «,.
Optimum values for these parameters are determined
by tuning the model to Eq. (41) for f > f,. In this
tuning process a local estimate for ¢,; was made for
preset values of a, and «,. The optimum values for the
latter two parameters are defined as those that resulted
in the smallest spatial variability of a;,. The selected
values for a, and «, are presented in Table 1, and cor-
responding local estimates for ay, and a,, are presented
in Figs. 4 and 5, respectively.

Estimates for g, in the high-frequency dissipation
as presented in Fig. 4 are consistent between the long-
and short-fetch runs, and show a negligible dependence
on the fetch £. The results for the stable and unstable
stratification data show a small but systematic differ-
ence.
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FIG. 4. Local estimates a,,; [Eq. (42)] of ao in Eq. (32) as a function
of the nondimensional fetch x for the four test cases: a, = 0.002, a,
= 2.0 for cases tuned to stable stratification data, and a, = 1.5 for
cases tuned to unstable stratification data.

Estimates for a,; as presented in Fig. 5 show a much
larger dependency on the fetch. In the short-fetch runs
(* and »), a,; drops to O for the smallest fetches. This
occurs because the input source term is insufficiently
strong to support the corresponding large values of a.
For the long-fetch runs (© and D) a,, is systematically
smaller for the first two grid points only. This behavior
is related to numerical propagation errors. Finally, a;;
shows a systematic increase for the large fetches in the
long-fetch run tuned to the stable stratification data
(o). This behavior is related to the fact that ¢ becomes
unrealistically low for fetches outside the range of ap-
plicability of Eq. (39) (see below ). Because the above
three regimes are showing a pronounced behavior of
a,,; with fetch, they have been excluded from the op-

stable unstable
a) j a5
“ Amm 3
x10 W8 . T x10
..
2 F A 4 *:j 12
.
a
.. o 0?® °°°°man’
a -]
.
a
1 1!
a
. o
.
) 1 L S 0
10* 10’ 108 pe 107

X

FiG. 5. Local estimates a,; of a, in Eq. (32) as a function of the
nondimensional fetch %. Legend and parameter settings as in Fig. 4.
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timization of a, (see Table 1). For the remaining
fetches, a;; within the separate runs is independent of
the fetch. The results for the four separate runs, how-
ever, all show significant differences.

Considering the above, it appears reasonable to es-
timate ay, a,, a,, and a, independent of the fetch, in
accordance with the reasoning in section 4b. The op-
timum values do, however, depend s1gn1ﬁcantly on the
growth curve E(%) to which the model is tuned. Of the
four parameters, @, and a, show a dependency on the
spatial resolution and, hence, on numerical propagation
errors. Below, we will neglect this influence of propa-
gation errors and use identical estimates of the above
four dissipation parameters for corresponding long-
and short-fetch runs.

As the final step of the tuning process, the dissipation
function ¢ in Eq. (25) is optimized locally, using the
parameters for the high-frequency dissipation as gath-
ered in Table 2. As described in section 4, ¢ will be
estimated in terms of a parameter describing the de-
velopment stage of the wave field. We have chosen to
express ¢ in terms of the nondimensional peak input
frequency f,, ;» which is closely related to the wave age
cp/uy. The local optimum estimates of ¢ as a function
of f,; are presented in Fig. 6. The results for the long-
and short-fetch runs are consistent, showing only small
effects of numerical propagation errors. For most of the
range of f,;, ¢ can be estimated using a simple linear
relation

¢ =bo+ b fy. (43)
Corresponding values for b, and b, are given in Table
2. For the long-fetch run tuned to the stable stratifica-
tion data (© in Fig. 6), ¢ becomes systematically lower
than predicted by the linear relation (43). This behav-
ior occurs in conditions near full development, where
f»i can decrease no more because the wind—wave in-
teraction parameter 8 becomes negative for the low-
frequency flank of the spectrum. Similarly, the input of
wave energy by wind cannot increase further. An in-
crease of wave energy with fetch can then only be
achieved by an increased rate of decrease of ¢. This
decrease of ¢ causes a corresponding increase of a,, in
Fig. 5. Because this behavior occurs for fetches well
outside the applicability of Eq. (39), this increased re-
duction of ¢ cannot be realistic. It might nevertheless
be useful to deviate from the linear relation (43) for

TABLE 2. Optimal parameter setting in Eqs. (32) and (43) obtained
from tuning the model to Egs. (39) or (40) and to Eq. (41),
(a, = 0.002, f,,mIn = 0.009, ¢, = 0.003).

a, . oa a, by b,
Eq. (39) 4.8 1L7x107* 20 03 %107 047
Eq. (40) 45 23%x107° 1.5 -58x107  0.60
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F1G. 6. The dissipation function ¢ in Eq. (25) as a function of the
input peak frequency f,;. Symbols as in Fig. 4. Dashed lines: Eq.
(43) with parameter values of Table 2, relaxed to ¢uin and £, ; min-

conditions near full development, defining a minimum
value ¢, for the smallest expected value ﬁ,zmm, as
this gives us some control on estabhshlng ““full-
growth’’ wave energies.

For model runs tuned to the unstable stratification
data (o and 2) the linear relation (43) describes all
obtained values of ¢. However, for the longest fetches
¢ goes to zero before f, ; reaches its ‘saturation’’ level.
This would imply that fully developed seas correspond
to a complete absence of low-frequency dissipation and
is obviously not realistic. The runs tuned to the unstable
stratification data therefore also suggest the establish-
ment of a minimum value ¢y

Figure 6 indicates that ﬁ, :min =~ 0.009. To get results
for long fetches close to the Pierson and Moskowitz
(1964) results, we have selected ¢, = 0.003. The
linear relation (43) approaches the minimum values
smoothly as shown in Fig. 6.

6. Results

The new source terms have been tested in several
ways. First, we will present mean wave parameters and
spectral details for the physical and numerical condi-
tions for which the model has been tuned in the pre-
vious section. Second, we will assess the scaling be-
havior of the new model for realistic wind speeds and
the presently common spectral resolution of the WAM
model. Similarly, we will assess the nondimensional
behavior in terms of the wind speed u,, (instead of u,,)
and effects of numerical errors related to the spatial
resolution. Finally, we will illustrate model behavior
for more complicated conditions by considering spec-
tral evolution for turning winds.

In the above experiments, the new model is also
compared with the most recent version of WAM [cycle
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4 as described by Komen et al. (1994)]. For this com-
parison, two minor modifications have been made to
WAM. First, propagation in north—south directions has
been disabled to represent Eq. (1). Second, the fre-
quency resolution, which cannot be changed externally
in WAM, has been modified where necessary.

Figure 7 shows mean wave parameters as a function
of the fetch X for the numerical and physical conditions
used in the previous section. To include conditions with
extremely long fetches, additional runs have been per-
formed with a grid with Ax = 250 km. Although the
corresponding total fetch of 9500 km is unrealistic for
the wind speed of 20 m s ', the nondimensional results
are relevant for more common lower wind speeds. The
parameters presented are the nondimensional energy E,
peak frequency f,, drag coefficient at 10-m height C),,
and the nondimensional energy level in the parametric
tail a(f.). The peak frequency is estimated from the
one-dimensional spectrum #(f) using a parabolic fit
for the three discrete frequencies around the discrete
peak frequency.

Results of the new model tuned to the stable or un-
stable stratification data are represented by the solid and
the dashed lines in Fig. 7. The nondimensional energy
E (panel a) shows excellent agreement with Egs. (39)
and (40) (not presented in figure) and with the corre-
sponding data (shaded areas). The corresponding peak
frequencies f, (panel b) are in reasonable agreement
with the data but are 5%-10% higher than expected
from (39) and (40). The drag coefficient Cq (panel ¢)
shows the expected increase with decreasing fetch £.
The nondimensional energy a(f,) (panel d) for the
model tuned to the stable data (solid line) shows ex-
cellent agreement with Eq. (41) and equals the Pier-
son—Moskowitz (1964) level for extremely long
fetches. The results for the model tuned to the unstable
data (dashed lines) shows some deviation from Eq.
(41), but the results are still fairly good. The smooth
model behavior and the consistency between results
with all three resolutions indicate that the new model
is fairly insensitive to numerical errors. Effects of nu-
merical errors in the first few grid points are most pro-
nounced in @ (panel d) and to a lesser extend in f,
(panel b).

Results of WAM are represented by the dotted lines
in Fig. 7. For the long and extremely long fetch runs
(center and right curves), the energy E is similar to the
results of the new model tuned to the unstable stratifi-
cation data (panel a). The peak frequency f, (panel b)
is lower than for the new model and is close to (40).
The drag coefficient C,, shows a similar trend as the
new model, and « is similar to « of the new model
(panels ¢ and d). For the short-fetch run (left lines),
however, WAM greatly underestimates E and shows
aphysical behavior for Cj, and «. This behavior is ap-
parently due to correctable numerical errors in WAM
(Janssen, oral presentation at WISE meeting in Venice,
Italy, 1996).
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Figure 8 shows one-dimensional energy spectra
%(f) and nondimensional energy levels a(f) for sev-
eral fetches ¥ as obtained from the model with Ax = 25
km tuned to the stable stratification data. The one-di-
mensional spectra show the expected behavior, with a
small “‘overshoot’’ for the spectral peak of the younger
waves. The nondimensional energy level « in Fig. 8b
illustrates the existence of this overshoot (i.e., the local
maximum of a at the peak of the spectrum) and shows
that the overshoot decreases with decreasing peak fre-
quencies. However, « also shows a local peak in the
transition zone between the high- and low-frequency
dissipation (1.75-2.5f,). This behavior is an artifact
of the model. Because the magnitude of this maximum
depends on the strength of the DIA (figures not pre-
sented here), we assume that this behavior is related to
the artificially strong peak in the DIA for this frequency
range (see Hasselmann et al. 1985, Fig. 7).

Figures 9 and 10 show the corresponding two-di-
mensional spectra and source terms for the shortest (¥
= 1.05 X 10°) and longest fetches (£ = 1.05 X 107),
respectively. In both cases, the spectra show the small-
est directional spread near the peak frequency. For
short fetches (Fig. 9), the wind source term is entirely
positive. The maximum input coincides with the spec-
tral peak. Most of the input, however, occurs at fre-
quencies well above the spectral peak. The dissipation
source term roughly behaves opposite to the input and
appears coherent and continuous in spite of its inde-
pendent constituents. The nonlinear interactions shift
energy to frequencies below the spectral peak and away
from the wind direction for frequencies well above the
spectral peak. Energy is removed from frequencies
above the spectral peak for directions close to the wind
direction. The net source term shows growth for fre-
quencies around and below the spectral peak, and a net
dissipation for frequencies just above the spectral peak.
For frequencies well above the spectral peak, the source
terms are approximately in balance. In the parametric
tail (rightmost side of the panel, a small imbalance of
the source terms can be observed. For large fetches
(Fig. 10) the behavior of the source terms is qualita-
tively similar. The main difference with the short fetch
results is that the source terms are more closely in bal-
ance and that the input becomes negative for low fre-
quencies away from the wind direction. In this case the
magnitude of the negative input is approximately 20%
of the corresponding maximum of the nonlinear inter-
actions. For even longer fetches (figures not presented
here), the relative importance of the negative input in-
creases, and eventually negative input occurs even for
wave components traveling in the wind direction.

The second set of tests has been performed with a
spectral discretization using 24 directions (A8 = 15°)
and 25 frequencies (0.0418-0.412 Hz). This spectral
resolution has been used in many WAM applications.
The use of a preset spectral resolution implies that the
actual windsea spectrum might be (partially) outside
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coefficient at 10 m Cyo = vuy/uio (panel c), and high-frequency energy level a(f,) (panel d) as a function of
the nondimensional fetch ¥ = xguy' for the conditions in which the model has been tuned and an additional
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FIG. 8. One-dimensional energy spectra %(f) (a) and nondimen-
sional energy level a(f) [Eq. (26)] (b) for several fetches X corre-
sponding to the growth curves of Fig. 7 (model tuned to stable strat-
ification data, Ax = 25 km).

the discrete spectral range, in particular for low wind
speeds. In such conditions the frequencies f;, />, f.., and
[ are larger than the maximum discrete frequency foay -
In our numerical model we will allow this to happen,
effectively removing the high-frequency dissipation
and transition zones as shown in Fig. 3. Special atten-
tion has to be given to the length scale % in Eq. (23).
To assure that the dissipation is not overestimated for
poorly resolved spectra, Eq. (23) has to be evaluated
within the parametric tail for the proper estimate of f,.

Growth curves E(X) for wind speeds u;, ranging
from 5 to 35 m s ™! are presented in Figs. 11 and 12.
Figure 11 shows results normalized in terms of the fric-
tion velocity u,. The new model tuned to the stable
stratification data (panel a) shows excellent scaling be-
havior for wind speeds greater than 10 m s~!, indicat-
ing that the new model is insensitive to numerical errors
in this range of wind speeds and for the common dis-
cretizations presently used in third-generation models.
For extremely low wind speeds the scaling behavior
breaks down. This is caused by the fact that the cor-
responding spectrum is outside the discrete frequency
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range of the model. As the corresponding wave heights

-are small, this is not expected to have a significant im-

pact on practical implementations. Scaling behavior for
low wind speeds can be improved by extending the
discrete frequency range to higher frequencies (Tolman
1992).

The WAM model (panel b) shows consistent scaling
behavior for all wind speeds, with an underestimation
of the wave energy for the smallest fetches (consistent
with shortest fetches in Fig. 7a and likely due to a cor-
rectable numerical error). For higher wind speeds, re-
sults for the first few grid points deviate significantly,
suggesting that WAM is more sensitive to numerical
errors than the new model. The results of WAM are .
furthermore somewhat noisy. We suspect that this is
due to the calculation of the wave drag from the high-
frequency part of the spectrum, which is inherently
noisy. A detailed investigation of its source, however,
is outside the scope of the present paper.

Figure 12 shows the same results as Fig. 11, made
nondimensional with the wind speed instead of the fric-
tion velocity. These results are not expected to scale as
the relation between u,, and u, depends on the wind
speed. The results for the new model (panel a) show a
significant dependency of the results on the wind speed.
The results, however, are in good agreement with the
observations, considering that the observations were
made in wind speeds of 5—15 ms~'. The results of
WAM (panel b) are somewhat higher than the data for
stable stratification (shaded area) but represent the results
for unstable stratification well (not shown in figure). Sur-
prisingly, the results of WAM appear to be approximately
scaling with the wind speed for short fetches.

Finally, we will discuss qualitatively the results for a
case with homogeneous wind conditions and a change
in wind direction as an indication of the capability of the
new model to handle more complex wave conditions.
We consider a case similar to the turning wind case of
Hasselmann et al. (1985). Starting from a small spec-
trum, we allow the wave field to grow for 12 hours under
the influence of a wind with u#,, = 20 m s™!. After 12
hours, the wind turns instantaneously by 90° while main-
taining its strength. Spectra just before and after the turn-
ing of the wind are presented in Fig. 13, and correspond-
ing source terms are presented in Fig. 14.°

After the wind shift, a windsea starts building at high
frequencies in the new wind direction (Fig. 13). The
old windsea, which is now swell, loses high-frequency
energy quickly and low-frequency energy slowly. The
wind “‘input’” source term accounts for a large part of
the swell dissipation, as can be observed in Fig. 14.
The amount of dissipation of swell energy due to the
interaction with the wind increases with increasing an-
gle between the swell component and the wind. Due to
this mechanism, the swell field appears to turn in the
wind direction (Figs. 13c,d). Note that the nonlinear
interactions keep shifting swell energy to lower fre-
quencies and effectively slow down the shift in wave
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Fic. 9. Two-dimensional energy spectra and
source terms for £ = 1.05 X 10° obtained from the
model tuned to stable stratification data with Ax
=25 km. Solid (dashed) lines represent positive
(negative) values. Contour levels differ by factors
of 2. Lowest contour levels for spectrum at 2.15 X
1072 m® s rad~! and for source terms at +3.17 10~¢
m? rad™'. The arrow indicates the wind direction.
Frequencies along horizontal axis ranging from 0
to 4 f,.

direction induced by the wind (see Van Vledder and
Holthuijsen 1993).

7. Discussion

The present paper presents new parameterizations of
the source terms for a third-generation ocean wave
model. These parameterizations have been developed
and tested for idealized fetch-limited conditions. An
input source term is used that deviates significantly
from the input terms as used in WAM. In spite of these

Dissipation

differences, excellent growth behavior was obtained
from extremely short fetches up to fully developed
wave conditions. For intermediate and long fetches (&
> 109%), the new model and WAM show similar results
(Fig. 7), although the choice of the dataset to which
the new model is tuned leaves much room for adjust-
ment in practical implementations [up to 40% in wave
height, Kahma and Calkoen (1992, 1994)]. The new
model also shows excellent results for extremely short
fetches (£ < 2 10°), where WAM severely underesti-
mates the wave energy (Figs. 7a and 11b), apparently
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FiG. 10. As in Fig. 9 for £ = 1.05 X 10”. Lowest
contour levels for spectrum at 3.15 X 107" m® s
rad™' and for source terms at +6.70 X 107¢ m?
rad™".

due to correctable numerical errors. The new model
furthermore gives smoother results than WAM, sug-
gesting an increased robustness and reduced sensitivity
to numerical errors. However, the tests presented here
consider idealized conditions only. The true test of the
new model will be an implementation for realistic con-
ditions. For this reason, the new source terms have been
implemented in the latest version of WAVEWATCH
together with a third-order propagation scheme. A
global implementation with a 1.25° X 1° longitude—
latitude resolution is presently used for further valida-
tion.

Dissipation

- e -~ -

- -

Apart from the idealized fetch-limited conditions,
two additional simplifications are presently used. We
have considered (i) pure windseas and (ii) deep water
only. Both simplifications have implications for prac-
tical implementations.

When applying the present model to arbitrary spec-
tra, two complications arise. The first is the determi-.
nation of the cutoff frequencies in Fig. 3; the second is
the calculation of the wind stress.

The cutoff frequencies in Fig. 3 are essentially related
to the windsea part of the spectrum only. In the present
model the peak frequency of the wind sea is estimated
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FiG. 11. Nondimensional energy E as a function of the nondimensional fetch % for various wind speeds.
(a) New model tuned to stable stratification data. (b) WAM cycle 4. The shaded area represents the envelope
of the stable stratification data of Kahma and Calkoen (1992, 1994). Ax = 25 km, A8 = 15°, Af = 0.1f

(0.0418-0.412 Hz).
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FiG. 13. Model response to a wind shift of 90°. (a) Spectrum just before wind shift and (b)~(d) spectra 1, 2, and 3 h after
wind shift: #,o = 20 m s™". Lowest contour levels at 0.2 m* s rad™'. Qutermost grid circle corresponds to 0.4 Hz.

in a natural way from the input source term, whereas
WAM estimates this frequency from the mean frequency
of the entire spectrum (section 4¢). Our approach results
in more realistic model behavior, as is illustrated with
the turning wind case presented in Figs. 13 and 14. After
the turning of the wind, a new wind wave field is ex-
pected to grow at high frequencies in the wind direction.
Equations (36) and (37) result in such behavior, as the
transition to the parametric tail (f.) is moved to high
frequencies. If, however, f, is related to the mean fre-
quency as in WAM, the location of the parametric tail
is governed by the swell field traveling in the old wind
direction, and the new wind wave field cannot start its
development at realistically high frequencies.

In the present model the stress is calculated using a
parametric relation, which assumes a pure windsea
without swell. Steep swells, however, can contribute
appreciably to the total stress (Chalikov and Belevich
1993), which impacts both our input and dissipation.
This problem could be solved by considering a hybrid
algorithm, where the stress carried by the equilibrium
range of the spectrum is calculated parametrically and
where the remaining stress is calculated directly from
the input source term. Note that the uncertainties in the
calculated directional distribution for high frequencies
(section 3), and unrealistic model behavior of a( f') for
relatively high frequencies (Fig. 8b), support our ar-
guments that the stress carried by the corresponding
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fmax = 0.400

Total source term

Nonlinear interactions

FiG. 14. As in Fig. 9 for conditions correspond-
ing to Fig. 13c. Lowest contour levels for spectrum
at 0.2 m* s rad™' and for source terms at 10~ m?
rad™'. Frequencies ranging from 0 to 0.4 Hz.

part of the spectrum should not be calculated directly
from the input source term.

The present model has been developed assuming
deep water conditions, for which the energy balance
equation is given by (1). Generalization of Eq. (1)
for limited water depths requires a modification of
the present source terms and several other modifi-
cations (see, for instance, WAMDIG 1988). The
physics of the input source term are governed by the
shape of the surface and the propagation velocity of
the waves. Limited water depths influence wave
growth as they influence the phase speed of the

Dissipation
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waves. This effect can be incorporated in the input
source term by replacing the nondimensional fre-
quency @, (4) with a inverse nondimensional phase
speed or ‘‘wave age’’

W, = %cos(a —-4,), 44)
which for deep water is identical to Eq. (4). The
nonlinear interactions can be adapted to limited
water depths using a simple depth-dependent scaling
(Hasselmann and Hasselmann 1985). The high-fre-
quency dissipation does not require adaptations, as
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water depths will be deep for this part of the spectrum
in all but extremely depth-limited wind seas. The
low-frequency dissipation has been expressed in
terms of the wave geometry (wavenumber and spec-
tral densities) and is therefore expected to be equally
valid in deep water and in limited water depths.

In spite of the apparent success of our model, the
problem of modeling the physics of growth of wind
waves remains far from being resolved. All three
source terms incorporate unresolved problems.

The input source term appears to be reasonably well
established. Nevertheless several issues are still unre-
solved. For instance, the present wind—wave interac-
tion parameter B is rather sensitive to the boundary
conditions and the closure scheme of the Reynolds
model on which it is based (e.g., Li et al. 1994). This
adds an appreciable uncertainty to the Egs. (3). Fur-
thermore, direct observations of 3 exhibit large scatter,
which makes a direct validation of an input source term
practically impossible (e.g., Hasselmann and Bésen-
berg 1991). Finally, the input depends critically on the
wind stress, which is governed mainly by the high-fre-
quency range of the spectrum. This part of the spectrum
cannot yet be modeled satisfactorily (from either a
physical or a numerical perspective).

The nonlinear interactions are fairly well known, but
economical considerations do not allow for a full pa-
rameterization in prediction models. Presently, the DIA
is the only feasible parameterization of the nonlinear
interactions for operational models. The original de-
velopment of the DIA has concentrated on modeling
the shift of wave energy to lower frequencies. The shift
of energy to high frequencies, however, is modeled
poorly (see section 3), which has implications for the
modeling of the spectral shape at high frequencies (sec-
tion 3 and Fig. 8b). Because many physical processes
are concentrated at high frequencies (generation of
stress and a large part of input and dissipation, e.g., see
Fig. 9), this deficiency of the DIA deserves additional
attention. It is interesting to observe, that our decrease
of the strength of the DIA might be expected to de-
crease the growth rate of the waves because it decreases
the shift of energy to lower frequencies. Instead, it re-
sults in an increase of the growth rate, as less input
energy is shifted to higher frequencies, where it is dis-
sipated and cannot contribute to wave growth (figures
not presented here).

The physics of wave energy dissipation are still
largely unknown, and the dissipation source term is
used here as a tunable closure term in the wave energy
balance equation. The main contribution of the present
study to understanding the wave energy dissipation is
the distinction of two separate dissipation regimes
dominated by incompatible dissipation timescales. The
high-frequency dissipation covers only a fraction of the
total spectral energy. It nevertheless should be modeled
explicitly, to avoid that the high-frequency dissipation
dictates the spectral shape of the main (low frequency)
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dissipation. This new insight will hopefully simplify
theoretical investigation into the spectral signature of
whitecapping and other dissipation mechanisms.

The high-frequency dissipation source term pres-
ently has to be purely diagnostic, as we simply do not
understand the complicated physics of the equilibrium
range of the spectrum. Our high-frequency dissipation
is directly derived from the other source terms, and can
therefore not be expected to yield physical insight. For
different parameterizations of S,,;.q and S, and for dif-
ferent shapes of the parametric tail, the parameteriza-
tion of high-frequency dissipation needs to be reas-
sessed.

The choice to describe the low-frequency dissipation
with a turbulence analogy is somewhat arbitrary. The
dependence of this source term on the function ¢ makes
the final definition of our source term to some extend
a tuning exercise. A potential shortcoming of our low-
frequency dissipation (25) is that it is directly related
to the input through the friction velocity u,, and there-
fore vanishes for u — 0. In such conditions steep swells
will not be dissipated. The impact of this potential
shortcoming should be investigated using realistic
model implementations. Steep swells, however, are
mostly due to strong effects of shoaling or due to
wave—current interactions, both of which are expected
to be relevant in relatively small-scale implementations
only.

8. Conclusions

The present paper presents a new version of the
third-generation ocean wave model WAVEWATCH
using a wind input term based on Chalikov and Belev-
ich (1993), the discrete interaction approximation
(DIA) to nonlinear interactions and a new dissipation
source term. It is suggested that the dissipation source
term should consist of two constituents: Our high-fre-
quency dissipation source term, applied near the equi-
librium range of the spectrum, is purely diagnostic. Our
low-frequency dissipation, which corresponds to the
conventional whitecapping term, is based on an anal-
ogy with wave energy dissipation due to turbulence in
the oceanic boundary layer.

The model is tuned and tested using standard fetch-
limited growth conditions. Although our input source
term is significantly weaker than previous input source
terms, excellent growth behavior is obtained up to full
development. However, details of the spectrum appear
to be influenced significantly by errors in the DIA. The
new model shows growth curves compatible to those
of WAM cycle 4 for intermediate and long fetches,
although the scatter in validation data leaves room for
large modifications of the growth behavior. The new
model also shows excellent growth characteristics for
extremely small fetches, where WAM severely under-
estimates wave energy (apparently due to correctable
numerical errors). The new model finally gives
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smoother growth curves than WAM, and appears less
sensitive to numerical errors.
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