
Computational Science & Discovery

PAPER

ObsPy: a bridge for seismology into the scientific
Python ecosystem
To cite this article: Lion Krischer et al 2015 Comput. Sci. Disc. 8 014003

View the article online for updates and enhancements.

Related content
The Astropy Project: Building an Open-
science Project and Status of the v2.0
Core Package
The Astropy Collaboration, A. M. Price-
Whelan, B. M. Sipcz et al.

-

A development environment for visual
physics analysis
H -P Bretz, M Brodski, M Erdmann et al.

-

SunPy—Python for solar physics
The SunPy Community, Stuart J Mumford,
Steven Christe et al.

-

Recent citations
OnDeck Seismology: Lessons from InSight
for Future Planetary Seismology
M. P. Panning et al

-

Using wavelet filtering to perform
seismometer azimuth calculation and data
correction
Penghui Wang et al

-

rf: Receiver function calculation in
seismology
Tom Eulenfeld

-

This content was downloaded from IP address 81.221.140.206 on 22/04/2020 at 07:15

https://doi.org/10.1088/1749-4699/8/1/014003
http://iopscience.iop.org/article/10.3847/1538-3881/aabc4f
http://iopscience.iop.org/article/10.3847/1538-3881/aabc4f
http://iopscience.iop.org/article/10.3847/1538-3881/aabc4f
http://iopscience.iop.org/article/10.1088/1748-0221/7/08/T08005
http://iopscience.iop.org/article/10.1088/1748-0221/7/08/T08005
http://iopscience.iop.org/article/10.1088/1749-4699/8/1/014009
http://dx.doi.org/10.1029/2019JE006353
http://dx.doi.org/10.1029/2019JE006353
http://dx.doi.org/10.1016/j.cageo.2020.104447
http://dx.doi.org/10.1016/j.cageo.2020.104447
http://dx.doi.org/10.1016/j.cageo.2020.104447
http://dx.doi.org/10.21105/joss.01808
http://dx.doi.org/10.21105/joss.01808

ObsPy: a bridge for seismology into the scientific
Python ecosystem

Lion Krischer1, Tobias Megies1, Robert Barsch2, Moritz Beyreuther3,
Thomas Lecocq4, Corentin Caudron5 and Joachim Wassermann1
1 LMU Munich, Department of Earth and Environmental Sciences, Munich, Germany
2 EGU Executive Office Munich, Germany
3Müller-BBM Active Sound Technology GmbH, Munich, Germany
4Royal Observatory of Belgium, Brussels, Belgium
5 Earth Observatory of Singapore, Singapore, Singapore
E-mail: krischer@geophysik.uni-muenchen.de

Received 17 March 2014, revised 6 August 2014
Accepted for publication 18 March 2015
Published 18 May 2015

Computational Science & Discovery 8 (2015) 014003

doi:10.1088/1749-4699/8/1/014003

Abstract
The Python libraries NumPy and SciPy are extremely powerful tools for
numerical processing and analysis well suited to a large variety of applications.
We developed ObsPy (http://obspy.org), a Python library for seismology
intended to facilitate the development of seismological software packages and
workflows, to utilize these abilities and provide a bridge for seismology into the
larger scientific Python ecosystem. Scientists in many domains who wish to
convert their existing tools and applications to take advantage of a platform
like the one Python provides are confronted with several hurdles such as special
file formats, unknown terminology, and no suitable replacement for a non-trivial
piece of software. We present an approach to implement a domain-specific time
series library on top of the scientific NumPy stack. In so doing, we show a
realization of an abstract internal representation of time series data permitting
I/O support for a diverse collection of file formats. Then we detail the integration
and repurposing of well established legacy codes, enabling them to be used in
modern workflows composed in Python. Finally we present a case study on how
to integrate research code into ObsPy, opening it to the broader community.
While the implementations presented in this work are specific to seismology,
many of the described concepts and abstractions are directly applicable to other
sciences, especially to those with an emphasis on time series analysis.

Keywords: seismology, time series analysis, Python, earthquakes, signal
processing, NumPy, SciPy

Computational Science & Discovery 8 (2015) 014003
1749-4699/15/014003+17$33.00 © 2015 IOP Publishing Ltd

mailto:krischer@geophysik.uni-muenchen.de
http://dx.doi.org/10.1088/1749-4699/8/1/014003
http://obspy.org

1. Introduction

The scientific Python ecosystem built around NumPy [23] and SciPy offers a wealth of
possibilities for all fields of science, mathematics, and engineering. This enables the creation of
versatile and powerful workflows and applications. Over the years many fields of science have
developed their own set of file formats, tools and analysis software adapted to suit their
particular tasks and attempting to extend these to more flexible uses often ends up being hard or
impossible. Therefore a more general approach like the one offered by the SciPy stack (http://
scipy.org/stackspec.html) is desirable.

ObsPy [2] provides read and write support for essentially all file formats commonly
distributed within the seismological community superseding an abundance of file format
converters. On top of this broad I/O support it offers signal processing routines utilizing a
jargon prevailing among seismologists. A third milestone is the integrated access to data
distributed by a wide range of seismic data centers worldwide and finally, it integrates a number
of special purpose libraries in use in seismology while unifying all functionality with an easy to
use interface.

2. Domain-specific time series analysis

The ObsPy library contains a domain-specific time series analysis toolkit which enables
seismologists to construct processing workflows in a notation familiar to them. It thus provides
an interface to the vast functionality offered by NumPy and SciPy to domain experts which
might otherwise hesitate to invest into learning Python and its scientific ecosystem. The first
section contains a technical description of how a number of different time series file formats can
be handled in a unified manner and how to use a plug-in system to map general signal
processing routines provided by NumPy and SciPy to the aforementioned convenient interface.
This approach has proven itself to work very well and we believe it can easily be applied to
other fields.

2.1. Seismic waveforms

Seismology is the study of the propagation of elastic waves through mostly solid media.
The seismic waves result from natural (tectonic earthquakes, volcanoes, ocean waves) or man-
made (nuclear explosions, quarry blasts, induced earthquakes) sources and are measured and
recorded at seismographs. These perform point measurements of the elastic wavefield in
up to three orthogonal directions. Each direction or component measures either the
displacement, velocity or acceleration of the ground motion in the form of a one-dimensional,
time-dependent signal. The resulting equally sampled time series are called seismograms or
seismic waveforms.

With the emergence of digital seismology in the last couple of decades, numerous seismic
waveform file formats have surfaced. Some, like the MiniSEED format [18] for data archiving
and streaming, were designed with a specific purpose in mind, while the majority of formats are
by-products of seismic signal processing or analysis packages that used custom formats for their
I/O. The adoption of some of these software packages caused their I/O formats to become

2

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

http://scipy.org/stackspec.html
http://scipy.org/stackspec.html

widely used data exchange formats—a purpose for which they were not designed. A recurring
problem, for example, is the byte ordering: most formats do not specify whether they are written
in big or little endian and for many formats, examples of both can be found. This myriad of file
formats and software suites only accepting one particular file format caused many format
converters to be written and distributed.

Each available waveform format in essence stores one or more time series and some meta-
information about it. The essential ingredients of these formats can be distilled to a common
subset of information enabling the use of a unified internal representation. ObsPy provides an
implementation of that idea, which is described in the following section.

2.2. Characteristics of waveform data formats

Assuming that a seismic data recording starts at time A, ends at time B and is equidistantly
sampled without gaps and overlaps, it can be uniquely described by the time of the first sample,
the sampling rate, the instrument it was recorded with and an array containing the signal. This is
the common core information and all waveform file formats have to contain it in some fashion.
In seismology receivers are uniquely identified by the so-called SEED identifiers [18] consisting
of four short strings. A globally coordinated effort attempts to ensure that this system stays
intact and as a direct result, most waveform formats adhere to it, offering a solution to the
receiver location issue.

Seismic data also often have gaps and overlaps meaning that the data is not evenly
sampled and the previous assumption does not hold true anymore. Gaps can result from short
losses of power at the recording station or problems with the data transfer. Clock drifts and
corrections can be one of the reason for the overlap of data points. Some data formats and
ObsPy deal with this by allowing the storage of multiple chunks of waveform data, each being
equally sampled and generally well behaved in itself.

Any additional information a waveform file format might support within ObsPy is stored
separately as detailed in the next section.

2.3. Internal data representation

Within ObsPy, waveform data are represented by a Stream object that acts as a container for
any number of Trace objects. ObsPy defines a Trace to contain a single, contiguous, equally
sampled time window of waveform data alongside the necessary meta-information. Each
Trace object has a data attribute, which is a one-dimensional NumPy array. All further
information is located in the dictionary-like stats attribute.

The stats object stores the four SEED identifiers network, station, location
and channel, denoting the recording’s physical location and instrument. It furthermore
contains the times of the first and last sample, the data’s sampling rate and interval and the
number of samples. This information is partially redundant and ObsPy takes care that it stays
consistent. For example, the endtime attribute is read-only and will be adjusted automatically
if the start time, the sampling rate or the number of samples in the array has changed. Any
additional information a specific file format might contain not covered by this abstraction will

3

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

be stored in a container inside the stats object. See figure 1 for an illustration of the described
internal representation.

2.4. Broad data format support by means of a plug-in system

In order to support as many waveform file formats as feasible, a modular plug-in approach has
been chosen with each supported data format being its own submodule and registering with
ObsPy with the help of pkg-util’s plug-in system. Listing 1 shows the registration of an example
waveform plug-in. A file format submodule has to implement two functions with specified
interfaces, and a third one is optional:

• is_format(filename): format identification function. Returns True if the passed file
is of the submodule’s format; False otherwise.

• read_format(filename, ∗∗kwargs): reads the file and returns a Stream object
containing a representation of the file’s data.

• write_format(stream, filename, ∗∗kwargs): writes a Stream object to the
given filename; this function is optional, and if not given, no write support for the format
will be available.

Figure 1. Illustration of ObsPyʼs internal waveform data representation in the form of
the Trace objects gathered in a Stream object. Each Trace object represents a
contiguous, equally sampled time series with the samples stored in a NumPy array;
additional metadata are placed under the stats attribute. The Stats object will keep
the meta-information self-consistent by making use of custom item setters. A collection
of domain-specific signal processing methods enables scientists to construct workflows
in a terminology with which they are familiar.

4

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

Listing 1: excerpt from ObsPy’s setup.py script demonstrating how the waveform plug-
in entry points are defined on the example of the MiniSEED plugin. distutils will then
take care of registering the plug-in upon installation. Other Python modules can register
their own waveform format plug-ins for rarely used formats.

ENTRY_POINTS={
...
"obspy.plugin.waveform": [
...
"MSEED = obspy.mseed.core",
...

]
...

"obspy.plugin.waveform.MSEED": [
"isFormat = obspy.mseed.core:isMSEED",
"readFormat =obspy.mseed.core:readMSEED",
"writeFormat = obspy.mseed.core:writeMSEED",

],
...

}

The forced modularity of this strategy fosters a clean separation of concerns with each
submodule being implemented and tested independently. In addition, it allows users to extend
ObsPy with I/O support for formats that are not used widely enough to justify integration into
the main ObsPy library. A common example for this is output formats of numerical waveform
solvers. pkg-utils’ plug-in system will register these additional formats for a seamless
integration with the rest of ObsPy.

2.5. Format autodetection and usage

ObsPy comes with a top-level read() function, a single entry point when reading waveform
data. See the listing 2 for a usage example.

Listing 2: snapshot of an interactive Python session demonstrating the usage of ObsPy’s
read() function. It will detect the file’s format and call the appropriate reading
routine. In case the read() routine detects a valid HTTP URL it will download the
resource before proceeding. In case it detects an archive format it will be decom-
pressed first.

>>> import obspy
>>> st=obspy.read("filename")
>>> st
<obspy.core.stream.Stream at 0x2f284d0 >
>>> print st
3 Trace(s) in Stream:
BW.RJOB..EHZ ∣ 2009–08-24T00:20:03.000000 Z -... ∣ 100.0 Hz, 3000 samples
BW.RJOB..EHN ∣ 2009–08-24T00:20:03.000000 Z -... ∣ 100.0 Hz, 3000 samples
BW.RJOB..EHE ∣ 2009–08-24T00:20:03.000000 Z -... ∣ 100.0 Hz, 3000 samples

5

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

The read(filename, ∗∗kwargs) routine calls all registered formats’ is_filefor-
mat() functions until one returns True. Depending on the format in question the
is_fileformat() routine parses the first couple of bytes or performs more complicated
heuristics. For performance reasons the format detection routines have to be fast. On top of that,
ObsPy performs the format detection according to a manually curated list so that the most
commonly used ones are tested first, improving average performance. After the format has been
determined the appropriate format’s read_fileformat() function will be called, which
parses the file and returns a Stream object. The format detection can also be skipped by
providing the format to the read() routine.

This structure permits the sharing of capabilities among all formats by
implementing them as part of the read() routine. Examples of this are automatic file
downloading if a valid HTTP URL is detected and the decompression of a number of different
archive formats.

Web services provided by data centers around the globe are an important source
for waveform data. ObsPy implements clients able to interact with a comprehensive selection
of such data centers [20]. A waveform data request will end up being stored in a Stream
object so the workflow following the data acquisition is identical no matter the origin of
the data.

2.6. Domain-specific convenience methods

A unified internal data representation opens the possibility of defining methods transforming it.
With respect to this, ObsPy offers a comprehensive collection of signal processing routines
frequently used in seismology by relying heavily on functionality coming with NumPy

Table 1. Selection of processing methods for the Stream and Trace objects. Most
Trace methods are also available on the Stream objects which will apply the chosen
method to all their children.

Stream methods
merge() Attempts to merge Trace objects with the same ID
rotate() Rotates two- or three-component Stream objects
select() Returns a new Stream with Traces matching the selection

Trace methods
decimate() Decimates the data by an integer factor
detrend() Removes a linear trend from the data
differentiate() Differentiates the data with respect to time
filter() Filters the data
integrate() Integrates the data with respect to time
normalize() Normalizes the data to its absolute maximum
remove_response() Deconvolves the instrument response
resample() Resamples the data in the frequency domain
taper() Tapers the data
trigger() Runs a triggering algorithm on the data
trim() Cuts the data to given start and end time

6

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

and SciPy. These are implemented to match the needs seismologists have for a
certain processing operation while keeping the data self-consistent. An example of this is the
Trace.decimate() method which will apply a filter, decimate the data and adjust
the sampling rate metadata of the times series. Caused by the potentially large number of
samples, most operations are implemented as in-place modifications of the Stream and
Trace objects.

Most processing methods are defined on a single Trace; the same methods on the
Stream objects will call the corresponding method on each of their Trace children. This
allows for a natural handling of three and more component data. A number of methods are
specific to Stream methods. Consult table 1 for a selection of available signal processing
routines.

In order to offer a large variety of functionality, ObsPy once again employs a plug-in
system. Listings 3–5 demonstrate this by example with the Trace.taper() method. The
employed plug-in system empowers the usage of functionality defined by different modules into
a simple domain-specific API usable by scientists. It furthermore encourages code deduplication
and reuse and thus enables ObsPy to offer a large variety of different functions without having
to implement and test the details in many cases.

Listing 3: excerpt from ObsPyʼs setup.py file. Upon installation these entry points will
be registered and made available to pkg-utils. The code snippet illustrates this by
registering different taper windows. At the time of writing ObsPy exposes 18 different
taper windows mainly from the scipy.signal module. Usage is demonstrated in the
listing 5.

...
"obspy.plugin.taper": [

"cosine = obspy.signal.invsim:cosTaper",
"barthann = scipy.signal:barthann",
...

]
...

Listing 4: code fragments from within the Trace objectʼs taper() method. It shows
how the functions registered as illustrated in the listing 3 are called to obtain different
taper windows and how optional keyword arguments are passed to it. Usage is
demonstrated in the listing 5.

...
retrieve function call from entry points
func = _getFunctionFromEntryPoint(

"taper", type)
...
taper_sides = func(2 ∗wlen, ∗∗kwargs)
...

7

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

Listing 5: usage of the functions registered and called in listings 3 and 4. Note how
the actual taper windows can be and in this case are defined in different Python
modules. On top of that, this listing demonstrates method chaining which is possible
because the methods return their objects. The calls to copy() are necessary as most
methods work in place and therefore would modify the object. This memory-saving
behavior is wanted in most cases and is a conscious design choice to match the average
use case.

import obspy

st = obspy.read("filename")
Taper with a cosine window.
st2 = st.copy().taper("cosine")
Taper a with modified Bartlett-Hann window.
st3 = st.copy().taper("barthann")

The methods can be chained for a compact notation.
st4 = st.copy().detrend("linear").taper("cosine")

3. Integration of legacy codes

For certain tasks the seismological community frequently relies on codes that have been in use
for a decade or more. This heavy exposure and application to a large variety of problems
assures that they work as expected in almost all cases as most issues have already been
discovered and fixed. While these codes are often cumbersome to use, it is desirable to keep
them vivid and to profit from the investment made in their development in the past. ObsPy
integrates a number of legacy codes, enabling the use of modern workflows and recent advances
in data processing while simultaneously relying on stable and well tested code for a specific
functionality. This section illustrates this on two examples.

3.1. Travel time calculations with iaspei-tau

The calculation of seismic travel times is a problem frequently encountered in seismology. If
an earthquake occurs at point X the question is what seismic phases arrive at what time at
point Y. The cost for full 3D simulations of the whole Earth [29] are excessive for many
applications and less accurate but faster approximations are often sufficient. In case a 1D
spherically symmetric Earth model is applicable, the frequently used method of Buland and
Chapman [3] enables very fast travel time calculations. It has been implemented in a Fortran
package commonly called iaspei-tau [14, 26]. A more feature-rich Java version of this
algorithm is also available [4]. The obspy.taup submodule uses ctypes from the
Python standard library to provide a pythonic interface to iaspei-tau; see the listing 6.
Figure 2 plots the travel times of an earthquake through the Earth versus the geographic
distance in degrees.

8

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

Listing 6: usage of obspy.taup to attain travel times for seismic phases originating from
a source with a distance of 25° and a depth of 10 km. The distance delta is given in
degrees assuming a spherical Earth, the depth is in kilometers and the Earth model is
ak135. It returns a list instead of a dictionary as the phase names are non-unique for
certain distance and phase combinations.

>>> from obspy.taup import getTravelTimes
>>> getTravelTimes(delta=25.0, depth=10.0, model="ak135")
[{"phase_name": "P",

"take-off angle": 28.375334,
"time": 323.91006, ...},

{"phase_name": "pP",
"take-off angle": 151.61096,
"time": 326.94455, ...},

...

3.2. Instrument responses: Stationxml harnesses evalresp

Seismic receivers distributed around the globe aim to measure and record ground motion as
accurately as possible. Many factors influence the characteristics of the final waveform, among
them the frequency response of the physical instrument, the effects of any amplifiers, of analog
and digital filters and of the digitalization. For many applications studying the Earth, it is crucial
to eliminate these effects to get the best possible estimate of the true ground motion. The first
step when correcting data for the influence of the seismic receiver and processing chain is to
calculate the frequency response of the recording system. The seismograms are then
deconvolved with this response to obtain a seismogram with physical units unbiased by
instrumental effects in the frequency band of consideration. This process is known as
instrument correction in seismology.

Figure 2. Travel times of seismic waves through the 1D Earth model ak135. The top
graph shows travel times for some seismic phases calculated by the obspy.taup module.
The bottom plot shows the difference for the P phase travel times calculated with the
TauP Toolkit [4] and obspy.taup. The deviations are mainly due to differing internal
coordinate systems and are well understood by the community [15]. The amplitude of
the differences strongly depends on the used seismic phase and the source-receiver
geometry.

9

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

Listing 7: C struct representing the physical response of an instrument in form of poles
and zeros. Recreating this with ctypes requires the definition of a Python class which is
shown in the listing 8.

struct complex {
double real;
double imag;
};

struct pole_zeroType {
int nzeros;
int npoles;
double a0;
double a0_freq;
struct complex *zeros;
struct complex *poles;
};

Listing 8: Python class representing the pole_zeroType C structure shown in
listing 7 using the ctypes library. complex_number is already defined in this
example.

import ctypes as C

...

class pole_zeroType(C.Structure):
fields = [
("nzeros", C.c_int),
("npoles", C.c_int),
("a0", C.c_double),
("a0_freq", C.c_double),
("zeros", C.POINTER(complex_number)),
("poles", C.POINTER(complex_number)),

]

Seismic recording systems are described by a linear chain of different stages or elements.
The SEED data format [18] accurately represents these, is widely accepted by the community
and has been in use since the early 1990s. Recently, StationXML [19], the designated successor
of SEED, was developed, and the community is starting to adopt it. Being an XML format, it
has many benefits in comparison to the binary SEED format regarding tool support, ease of data
distribution and human readability. Except for some minor differences, both formats store the
same information.

The standard workflow for calculating the frequency response of a seismic receiver system
from SEED files involves rdseed [12] to generate RESP files, a textual strict subset of SEED.
These files are then fed into evalresp [11] resulting in the frequency response. The detour via
the RESP files is necessary as it is the only input file format evalresp accepts. Performing an

10

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

instrument correction with metadata stored in StationXML files involves one additional step—
the conversion of the StationXML files to SEED files using yet another tool.

Conducting this in Python involves a number of system calls and unnecessary I/O
operations making it ill-suited to modern large data workflows. Replacing evalresp would be a
major effort as many pitfalls exist when calculating instrument responses, which can greatly
influence the final result. Instead ObsPy offers a direct bridge from StationXML (parsed
through lxml) to evalresp utilizing ctypes to call internal evalresp functions. This approach is
not feasible for code that is still actively developed as no guarantees on the stability of the
internal API are usually granted. However, evalresp is not in active development anymore and
only receives an occasional maintenance commit.

ObsPyʼs internal representation of StationXML data is used to derive the nested
C structures evalrespʼs internal functions expect. These are defined and initialized using
ctypes as demonstrated in listings 7 and 8. Ctypes also requires a definition of the function
headers as shown in listings 9 and 10. Figure 3 displays the amplitude and phase response
calculated from a StationXML file also illustrating the effect of different stages in the recording
system.

A seismic receiverʼs recording system usually has several stages resulting in a fairly
complex representation within evalresp. Evalrespʼs file parsing stage takes care of translating
the SEED constructs to the appropriate internal structure and sometimes makes non-obvious
decisions. To ensure the correctness of the evalresp integration we performed an extensive test
[16]. We define our integration of evalresp acting on StationXML files to be correct if the final
response is equivalent to a response calculated by converting StationXML to SEED and SEED
to RESP files on which evalresp is acting. We downloaded almost the complete set of

Figure 3. Amplitude and phase response of channel XM.05..HHZ to convert a
seismogram from m s−1 to digital counts. The recording instrument is a Guralp CMG-
6TD seismometer. The green line shows the response if only the physical instrument
and the gain from the analog to digital converter are taken into account. The black line
also incorporates the three successive digital decimation stages, and the red line is the
Nyquist frequency for this particular channel. The green and black lines have been
calculated using ObsPyʼs integration of evalresp. For comparison, the orange line shows
the results for the same calculation performed by JEvalResp [13], a Java port of evalresp
and one of the very few software packages able to perform this calculation. The
agreement is very good; the differences after the Nyquist frequency are due to the
spacing of the discrete frequency values needed for plotting.

11

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

StationXML inventory data available from IRIS, the largest data distributor in seismology. Data
from over 27 000 stations, most with multiple recording channels defined for different periods
in time result in well over 100 000 instrument responses. We reiterated our implementation until
the tests passed, giving confidence that our solution can be safely applied to any data
encountered in the world wide community.

Listing 9: function declaration in the C code of evalresp. This is the main function used
to calculate the response. Note how the input takes a number of different parameters
from simple integers to arrays of custom structs. The complex struct does not need to
be defined on the Python side as the numpy.complex128 dtype does have the same
internal memory layout.

...

struct complex {
double real;
double imag;

};
...
void calc_resp(struct channel ∗chan,

double ∗freq,
int nfreqs,
struct complex ∗output,
char ∗out_units,
int start_stage,
int stop_stage,
int useTotalSensitivityFlag);

Listing 10: the corresponding declaration to listing 9 in ctypes. The numpy.ctypeslib
module provides array types that will result in automatic type, dimension and flag
checks upon function invocation. This results in a convenient calling syntax and error
handling on the Python side before calling the shared library.

from obspy.signal.headers import clibevresp import ctypes as C
...
clibevresp.calc_resp.argtypes = [

C.POINTER(channel),
np.ctypeslib.ndpointer(
dtype=’float64’, ndim=1,
flags=’C_CONTIGUOUS′),
C.c_int,

np.ctypeslib.ndpointer(
dtype=’complex128’, ndim=1,
flags=’C_CONTIGUOUS′),
C.c_char_p, C.c_int, C.c_int,
C.c_int]

clibevresp.calc_resp.restype = C.c_void_p

12

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

4. Integrating research code into ObsPy

4.1. Purpose

Contrary to the well-established, virtually bug-free legacy codes described above, many
scientists using Python in their analytic workflow tend to develop bits and pieces of codes that
are applied to their input data, and thus at first sight not useful for others. This general
ascertainment is also true in seismology where input data can have different formats, outputs
need to be compatible with different downstream processing software and so forth. In this
section, we first present a case study of the translation of a C code that can read an exotic format
called Win and then present a research code developed during a PhD thesis that is now
integrated in ObsPy as a new module. Thanks to the pluggability of ObsPy, only the necessary
processing steps need to be written.

4.2. Reading an excotic format—obspy.win

WIN is the format imagined by a Japanese company named Hakusan as default storage for their
Datamark datalogger series. The data within a one-minute WIN file is highly compressed, every
second being compressed with a different level from the previous. Up to now, there were three
ways to convert WIN to a more standard format, namely SAC: Win2Sac and japan2sac in
Linux and Win2Sac GUI on Windows. Win2Sac codes come from Japan, while the japan2sac
was written as part of a research project in Chambery (France) and is not completely finished. In
order to process these data using state of the art routines and software, e.g. using ObsPy-based
scripts, one has to convert the whole archive to SAC, which is readable by ObsPy. Each step of
this process doubles the volume of the archives stored on disk, and potentially adds errors to the
final product.

Thankfully, sources of Win2Sac are available online [22] and together with the datasheet
[30] describing the WIN format, we have been able to write an ObsPy plug-in to read it. The
final goal was to be able to read directly from the archive without duplication and process those
data the same way as data originating from other file formats. Even if oneʼs goal is to convert
WIN to MiniSEED, the best solution today will be to write a Python script using ObsPy and no
longer rely on a succession of steps.

4.3. Rewriting research code to an ObsPy extension

The state of a volcano and its unrests can be evidenced by the amount of amplitude (or energy)
recorded by seismic sensors on its flanks. Real-time seismic amplitude measurement (RSAM
(1)) was initially introduced by Endo and Murray [8] to forecast eruptions and assess the state of
volcanic activity. One can also compute the standard deviation of the squared amplitudes, or
real-time seismic energy measurement (RSEM (2)) [5], of the signals over a certain time
interval divided by the number of measurements.

∑=
=

()
N

ARSAM
1

, (1)
i

n

i

1

13

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

∑= −
=

()
N

A ARSAM
1

, (2)
i

n

i

1

avg
2

where Ai is the seismic signalʼs amplitude, Aavg is the average over N samples.
As multiple sources are overlapping, volcano-seismologists typically calculate the RSEM

or RSAM values for separate, previously defined frequency bands (spectral seismic energy
measurement (SSEM) [28], similar to SSAM introduced by Stephens [27]. The data are first
demeaned and bandpass filtered with a Butterworth filter of order two. Each value is then
calculated on a 30 s window (100 × 30 samples). Finally, the daily 10th and 25th percentiles
and the median are typically computed to partially remove undesired transients and earthquakes
which are considered a disturbance of the tremor data [7].

Figure 4. Daily and weekly fluctuations of the seismic amplitude (RSAM) in the 5–20
Hz frequency band for station PSG during a quiet period of volcanic activity. Fridays
(prayer day) are clearly visible. The amplitude is in counts.

Figure 5. Transition between a period of unrest to a more quiet period of volcanic
activity for stations around the crater (POS and PUN) and close to the parking/base
camp for climbing the volcano (PSG). The anthropic influence is still visible on PSG
even when computing the 10th percentile of the amplitude of the records.

14

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

The RSAM, RSEM, SSAM and SSEM algorithms have been implemented in the obspy.
signal.ssxm submodule. The final code takes advantage of the resampling abilities of
Pandas (Python Data Analysis Library), resulting in a total of less then 50 lines of code for the
ssxm() method.

4.3.1. Example results. The interest of filtering the signal in different frequency bands can be
illustrated with the Kawah Ijen volcano (East Java, Indonesia) seismic data. The seismic time
series are generally polluted by anthropic activities during the day, especially in high frequency
bands (>10Hz) and particularly for the stations located closer to the source of ‘cultural’ noise,
in this case the parking and base camp for climbing the volcano. One may even observe
weakened working activity during the prayer day (i.e. Friday, see figure 4). To minimize the
effects of transients, one can use the 10th percentile (p10) of the amplitude in a specific
frequency band (figure 5). Except during volcanic unrest (figure 5), the p10 data from station
PSG are still highly affected by this anthropic noise, compared to POS and PUN, which are
located around the crater, thus further away from the human activity.

Other studies investigated some particular processes by filtering the seismic signal. For
example, SSEM computations might provide a measure of the rate of strain released, if
persistent fracturing at any scale produces a sustained seismic signal [6]. One can also assess the
stationarity of the microseism noise sources (0.1–1 Hz) to evaluate the results from the velocity
variations using ambient seismic noise cross correlation techniques [17].

5. Conclusion

Legacy codes and data formats are widely used in a number of sciences and will continue to
play an important role in the foreseeable future. The approaches we laid out in this article help
in integrating them in modern computing environments. Most of the illustrated design and
implementation choices are transferable to other fields in computational science. The extraction
of common features from a heterogeneous set of file formats enables the construction of data
source independent workflows, which especially benefits data heavy domains. This, together
with a library of functionality in a domain-specific vocabulary and the inclusion of some critical
legacy codes, yields an attractive package even for users not familiar with Python.

ObsPy enjoys a large rate of adaption within the seismological community. We believe
this is in large part due to it solving an actual problem: the various different file formats that
previously required a plethora of file format converters or different signal processing tools.
Once people start to use it they quickly discover the flexibility and power of Python. In contrast
to, for example, MATLAB, using ObsPy also grants the advantages of a full-blown
programming language. A further competitive edge is the many 3rd party modules in Python
which are not directly associated with signal processing, enabling the use of, for example,
databases, web services, machine learning libraries and of course, the recent developments in
handling big data sets, which will become more and more important in seismology and other
fields. On top of all that, the complete stack is free, open-source and runs on virtually every
platform of relevance.

Studies that successfully utilized ObsPy include event relocations [21], rotational [10] and
time-dependent [24] seismology, big data processing [1], and synthetic studies about full-
waveform inversions [25] and attenuation kernels [9] to name a few examples. The ObsPy

15

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

website, accessible under http://www.obspy.org contains detailed documentation, an
extensive tutorial, and access to a mailing list in order to ease the transition to ObsPy and build
a community around it. The modularity described in this manuscript and the test-driven
development facilitate the addition of new functionality and as a result, ObsPy steadily
increases the number of external contributions with the goal of becoming a code maintained by
people throughout the community.

Acknowledgments

We want to thank the steadily growing ObsPy community for the continuous support and
constant encouragement and exchange. By now, too many people contributed code and ideas to
ObsPy to list them all, but we are grateful for each and every one of them. We also thank the
developers of Python, NumPy and consorts, and the authors of a number of libraries integrated
into ObsPy. Two anonymous reviewers helped to improve the final manuscript with thoughtful
reviews.

References

[1] Atkinson M, Baxter R, Brezany P, Corcho O, Galea M, Parsons M, Snelling D and van Hemert J 2013 The
Data Bonanza: Improving Knowledge Discovery in Science, Engineering, and Business (Hoboken, NJ:
Wiley)

[2] Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y and Wassermann J 2010 ObsPy: a python toolbox for
seismology Seismol. Res. Lett. 81 530

[3] Buland R and Chapman C 1983 The computation of seismic travel times Bull. Seismol. Soc. Am. 73
1271–302

[4] Crotwell H P, Owens T J and Ritsema J 1999 The taup toolkit: flexible seismic travel-time and ray-path
utilities Seismol. Res. Lett. 70 154–60

[5] de la Cruz-Reyna S and Reyes-Dávila G 2001 A model to describe precursory material-failure phenomena:
applications to short-term forecasting at colima volcano, Mexico Bull. Volcanol. 63 297–308

[6] de la Cruz-Reyna S, Tárraga M, Ortiz R and Martínez-Bringas A 2010 Tectonic earthquakes triggering
volcanic seismicity and eruptions. Case studies at tungurahua and popocatpet volcanoes J. Volcanol.
Geotherm. Res. 193 3748

[7] di Grazia G, Falsaperla S and Langer H 2006 Volcanic tremor location during the 2004 mount etna lava
effusion Geophys. Res. Lett. 33 4

[8] Endo E and Murray T 1991 Real-time seismic amplitude measurement: a volcano monitoring and prediction
tool Bull. Volcanol. 53 533–45

[9] Fichtner A and van Driel M 2014 Models and Frechet kernels for frequency-(in)dependent Q Geophys. J. Int.
198 1878–89

[10] Hadziioannou C, Gaebler P, Schreiber U, Wassermann J and Igel H 2012 Examining ambient noise using
colocated measurements of rotational and translational motion J. Seismol. 16 787–96

[11] IRIS 2014 Iris: Dms: Nodes: Dmc: Software downloads: evalresp http://iris.edu/dms/nodes/dmc/software/
downloads/evapresp/

[12] IRIS 2014 IRIS: DMS: Nodes: DMC: Software Downloads: rdseed http://iris.edu/dms/nodes/dmc/software/
downloads/rdseed/

[13] isti 2014 JEvalResp http://isti.com/JEvalResp/
[14] Kennett B L N and Engdahl E R 1991 Traveltimes for global earthquake location and phase identification

Geophys. J. Int. 105 429–65

16

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

http://www.obspy.org
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1785/gssrl.70.2.154
http://dx.doi.org/10.1785/gssrl.70.2.154
http://dx.doi.org/10.1785/gssrl.70.2.154
http://dx.doi.org/10.1007/s004450100152
http://dx.doi.org/10.1007/s004450100152
http://dx.doi.org/10.1007/s004450100152
http://dx.doi.org/10.1016/j.jvolgeores.2010.03.005
http://dx.doi.org/10.1029/2005GL025177
http://dx.doi.org/10.1007/BF00298154
http://dx.doi.org/10.1007/BF00298154
http://dx.doi.org/10.1007/BF00298154
http://dx.doi.org/10.1093/gji/ggu228
http://dx.doi.org/10.1093/gji/ggu228
http://dx.doi.org/10.1093/gji/ggu228
http://dx.doi.org/10.1007/s10950-012-9288-5
http://dx.doi.org/10.1007/s10950-012-9288-5
http://dx.doi.org/10.1007/s10950-012-9288-5
http://iris.edu/dms/nodes/dmc/software/downloads/evapresp/
http://iris.edu/dms/nodes/dmc/software/downloads/evapresp/
http://iris.edu/dms/nodes/dmc/software/downloads/rdseed/
http://iris.edu/dms/nodes/dmc/software/downloads/rdseed/
http://isti.com/JEvalResp/
http://dx.doi.org/10.1111/j.1365-246X.1991.tb06724.x
http://dx.doi.org/10.1111/j.1365-246X.1991.tb06724.x
http://dx.doi.org/10.1111/j.1365-246X.1991.tb06724.x

[15] Knapmeyer M 2005 Numerical accuracy of travel-time software in comparison with analytic results Seismol.
Res. Lett. 76 74–81

[16] Krischer L 2014 Stationxml test case git repository https://github.com/obspy/sandbox/tree/master/
stationxml_test

[17] Lecocq T, Caudron C and Brenguier F 2014 MSNoise: a python package for monitoring seismic velocity
changes using ambient seismic noise Seismol. Res. Lett. 85 715–26

[18] Incorporated Research Institutions for Seismology (IRIS) 2012 SEED Reference Manual-Standard for the
Exchange of Earthquake Data www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf

[19] The International Federation of Digital Seismograph Networks (FDSN) 2014 FDSN StationXML Schema
http://fdsn.org/xml/station/

[20] Megies T, Beyreuther M, Barsch R, Krischer L and Wassermann J 2011 ObsPy-What can it do for data
centers and observatories? Ann. Geophys. 54 47–58

[21] Megies T and Wassermann J 2014 Microseismicity observed at a non-pressure-stimulated geothermal power
plant Geothermics www.sciencedirect.com/science/article/pii/S0375650514000030

[22] Ohmi S 2014 win2sac.c http://1.rcep.dpri.kyoto-u.ac.jp/~ohmi/utils/src/win2sac.c
[23] Oliphant T E 2007 Python for scientific computing Comput. Sci. Eng. 9 10–20
[24] Richter T, Sens-Schönfelder C, Kind R and Asch G 2014 Comprehensive observation and modeling of

earthquake and temperature-related seismic velocity changes in northern Chile with passive image
interferometry J. Geophys. Res. 119 4747–65

[25] Schiemenz A and Igel H 2013 Accelerated 3D full-waveform inversion using simultaneously encoded
sources in the time domain: application to Valhall ocean-bottom cable data Geophys. J. Int. 195 1970–88

[26] Snoke J A 2009 Traveltime tables for iasp91 and ak135 Seismol. Res. Lett. 80 260–2
[27] Stephens C D, Chouet B A, Page R A, Lahr J C and Power J A 1994 Seismological aspects of the 1989–1990

eruptions at redoubt volcano, Alaska: the SSAM perspective J. Volcanol. Geotherm. Res. 62 153–82
[28] Tárraga M, Carniel R, Ortiz R, Marrero J M and García A 2006 On the predictability of volcano-tectonic

events by low frequency seismic noise analysis at teide-pico viejo volcanic complex, Canary Islands Nat.
Hazards Earth Syst. Sci. 6 365–76

[29] Tromp J, Komattisch D and Liu Q 2008 Spectral-element and adjoint methods in seismology Commun.
Comput. Phys. 3 1–32 http://resolver.caltech.edu/CaltechAUTHORS:TROccp08

[30] winformat 2014 Manpage of winformat http://eoc.eri.u-tokyo.ac.jp/cgi-bin/show_man_en?winformat

17

Comput. Sci. Discov. 8 (2015) 014003 L Krischer et al

http://dx.doi.org/10.1785/gssrl.76.1.74
http://dx.doi.org/10.1785/gssrl.76.1.74
http://dx.doi.org/10.1785/gssrl.76.1.74
https://github.com/obspy/sandbox/tree/master/stationxml_test
https://github.com/obspy/sandbox/tree/master/stationxml_test
http://dx.doi.org/10.1785/0220130073
http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf
http://fdsn.org/xml/station/
http://dx.doi.org/10.4401902Fag-4838
http://dx.doi.org/10.4401902Fag-4838
http://dx.doi.org/10.4401902Fag-4838
http://www.sciencedirect.com/science/article/pii/S0375650514000030
http://1.rcep.dpri.kyoto-u.ac.jp/~ohmi/utils/src/win2sac.c
http://1.rcep.dpri.kyoto-u.ac.jp/~ohmi/utils/src/win2sac.c
http://1.rcep.dpri.kyoto-u.ac.jp/~ohmi/utils/src/win2sac.c
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1002/2013JB010695/abstract;jsessionid=AB20F062F1351B47119AF
http://dx.doi.org/10.1002/2013JB010695/abstract;jsessionid=AB20F062F1351B47119AF
http://dx.doi.org/10.1002/2013JB010695/abstract;jsessionid=AB20F062F1351B47119AF
http://dx.doi.org/10.1093/gji/ggt362
http://dx.doi.org/10.1093/gji/ggt362
http://dx.doi.org/10.1093/gji/ggt362
http://dx.doi.org/10.1785/gssrl.80.2.260
http://dx.doi.org/10.1785/gssrl.80.2.260
http://dx.doi.org/10.1785/gssrl.80.2.260
http://dx.doi.org/10.1016/0377-0273(94)90032-9
http://dx.doi.org/10.1016/0377-0273(94)90032-9
http://dx.doi.org/10.1016/0377-0273(94)90032-9
http://dx.doi.org/10.5194/nhess-6-365-2006
http://dx.doi.org/10.5194/nhess-6-365-2006
http://dx.doi.org/10.5194/nhess-6-365-2006
http://resolver.caltech.edu/CaltechAUTHORS:TROccp08
http://eoc.eri.u-tokyo.ac.jp/cgi-bin/show_man_en?winformat

	1. Introduction
	2. Domain-specific time series analysis
	2.1. Seismic waveforms
	2.2. Characteristics of waveform data formats
	2.3. Internal data representation
	2.4. Broad data format support by means of a plug-in system
	2.5. Format autodetection and usage
	2.6. Domain-specific convenience methods

	3. Integration of legacy codes
	3.1. Travel time calculations with iaspei-tau
	3.2. Instrument responses: Stationxml harnesses evalresp

	4. Integrating research code into ObsPy
	4.1. Purpose
	4.2. Reading an excotic format—obspy.win
	4.3. Rewriting research code to an ObsPy extension
	4.3.1. Example results

	5. Conclusion
	Acknowledgments
	References

