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S U M M A R Y
Beamforming and backprojection methods offer a data-driven approach to image noise sources,
but provide no opportunity to account for prior information or iterate through an inversion
framework. In contrast, recent methods have been developed to locate ambient noise sources
based on cross-correlations between stations and the construction of finite-frequency kernels,
allowing for inversions over multiple iterations. These kernel-based approaches show great
promise, both in mathematical rigour and in results, but are less physically intuitive and inter-
pretable. Here we show that these apparently two different classes of methods, beamforming
and kernel-based inversion, are achieving exactly the same result in certain circumstances. This
paper begins with a description of a relatively simple beamforming or backprojection algo-
rithm, and walks through a series of modifications or enhancements. By including a rigorously
defined physical model for the distribution of noise sources and therefore synthetic correlation
functions, we come to a framework resembling the kernel-based iterative approaches. Given
the equivalence of these approaches, both communities can benefit from bridging the gap.
For example, inversion frameworks can benefit from the numerous image enhancement tools
developed by the beamforming community. Additionally, full-waveform inversion schemes
that require a window selection for the comparisons of misfits can more effectively target
particular sources through a windowing in a beamform slowness domain, or might directly use
beamform heatmaps for the calculation of misfits. We discuss a number of such possibilities
for the enhancement of both classes of methods, testing with synthetic models where possible.
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1 I N T RO D U C T I O N

Recent works have developed a framework to locate ambient noise
sources based on cross-correlations between stations and the con-
struction of finite-frequency kernels (e.g. Tromp et al. 2010; Hana-
soge 2013; Ermert et al. 2017; Sager et al. 2018; Datta et al.
2019; Xu et al. 2019), drawing on methods from helioseismol-
ogy (Gizon & Birch 2002). The approach shows promise, in re-
gards to both the mathematical formalism and in actual long period
results.

In this paper, we link this finite-frequency gradient-based in-
version approach to the more commonly used beamforming class
of methods, such as correlation-based beamforming (e.g. Bucker
1979; Hinich 1979; Fizell 1987; Ruigrok et al. 2017), backpro-
jection (Ishii et al. 2005; Meng et al. 2012), and matched field
processing (MFP, Baggeroer et al. 1988; Kuperman & Turek 1997).
Specifically, certain versions of these algorithms can be shown as
mathematically identical to the finite-frequency inversion, for at
least the first iteration.

The first half of this paper (Sections 2 and 3) reviews the basic
steps of a correlation-based beamforming and MFP algorithm, the
latter of which maps sources to a spatial domain instead of assuming
plane waves in a slowness or wavenumber domain. From there, a
series of modifications to change the order of processing steps and to
account for prior information are introduced, ultimately resulting in
the kernel-based inversion scheme. Throughout the manuscript, we
purposely distinguish and separate those steps which are needed to
understand the iteration process from those steps which are used for
computational efficiency: adjoint techniques and a direct simulation
of correlation wavefields are described for completeness, but only
at the end of Section 3, and do not have a direct bearing on the other
conclusions of the paper. We emphasize that while this first half of
the paper approaches the algorithms in a new and simple way, the
actual, final inversion method is unchanged from previous works
(Tromp et al. 2010; Datta et al. 2019; Xu et al. 2019, etc.).

Understanding how these two classes of methods relate allows
for the enhancement or extension of both. In the second half of
the paper, Section 4 demonstrates a few such possibilities. We first
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discuss two possibilities relating to the enhancement of beamform
techniques: an equivalence between noise-correlations and beam-
form maps allows for a characterization of the effect of noise pre-
processing schemes, and the inclusion of prior information in beam-
form techniques allows for improved resolution of recovered energy.
We then demonstrate two ways in which beamform techniques may
benefit a full-waveform inversion scheme, through the use of win-
dowing in slowness space to more intelligently select traveltime
windows for misfit calculations, and through the use of beamform
heatmaps themselves as misfit functions.

These methods should help improve our ability to image and un-
derstand the sources of seismic signals in the Earth. Much of this
work is motivated by the desire to understand the distribution of
noise sources in the primary and secondary microseism band (e.g.
Stehly et al. 2006; Gerstoft & Tanimoto 2007; Juretzek & Hadzi-
ioannou 2016), strongest between roughly 5–20 s periods, as the
advance of surface wave tomography from ambient noise cross-
correlation has allowed unprecedented crustal imaging in recent
years (e.g. Shapiro et al. 2005; Larose et al. 2006). Generally, the
technique requires an assumption that the noise wavefield is sta-
tionary and this is most likely usually not true, but full-waveform
tomographic methods can take a non-homogeneous distribution of
sources into account (Sager et al. 2018, 2020). Aside from sur-
face wave tomography, various similar imaging methods are used
at higher frequencies to study or exploit anthropogenic noise (e.g.
Nakata et al. 2011; Riahi & Gerstoft 2015; Chmiel et al. 2016), small
volcano- or tectonic-related tremor (Wassermann 1997; Ghosh et al.
2012; Inbal et al. 2016), the movement of and hydrodynamic sys-
tems around glaciers (Walter et al. 2015; Aso et al. 2017; Sergeant
et al. 2020), or even to image the complex rupture dynamics of
earthquakes (Meng et al. 2012; Gallovic et al. 2019).

Finally, we note that this paper specifically focuses on build-
ing a link between these two classes of methods, beamform-
ing/backprojection and kernel-based inversions, both of which ex-
ploit correlations between stations. In contrast, direct modelling of
individual waveforms from an earthquake source, and the widely
adopted migration tools of the seismic exploration community
(Song et al. 2019), both also offer numerous similarities and ad-
vantages [see Li et al. (2020) for descriptive overview]. Describing
and comparing station-pair correlation methods with direct, single-
station methods may be the scope of future works.

2 T R A D I T I O NA L B E A M F O R M I N G A N D
M F P

2.1 A description of cross-correlation beamforming

First we review the steps used for a simple beamformer. As will
be described shortly, this is based on the cross-correlation of wave-
forms (Ruigrok et al. 2017) rather than the ‘delay-and-sum’ ap-
proach, as the cross-correlation implementation is more directly
relatable to later sections. We first assume that observations of a
wavefield are collected at an array of stations. A grid search is per-
formed over a range of possible incident slownesses: s = (sx , sy),
mapping out the possible azimuths from which a plane wave might
have originated, and the wave speed that it propagates at. To test
whether that particular plane wave is a reasonable description of
energy sources, the appropriate station-station time delays are cal-
culated. The time delay between station i and station j is given
as:

�ti j = sT
(
xi − x j

)
, (1)

Figure 1. Calculating time-delays in beamforming: Assuming a possible
plane wave (black arrow and wave fronts) incident upon the array (stations
at x1, x2 and x3), time delays are calculated for each station pair.

where xi and x j describe the respective coordinates in space. Fig. 1
is a schematic representing three stations and the relative time de-
lays, for a given possible incident plane wave. This assumption of
a plane wave allows beamforming algorithms to be extremely com-
putationally efficient, but also represents a significant limitation:
the whole approach only works for sources that are well outside the
domain of the array and the recorded curvature of the wave front is
minimal.

One or the other waveform is shifted, and the correlation coeffi-
cient between the two waveforms is calculated:

Cobs
i j (�ti j ) =

∫
u[xi , t − �ti j (s)] u(x j , t) dt, (2)

where u(xi , t) refers to the observed time-series, recorded over some
time interval, here only on the vertical component of motion. The
sum of all station–station pairs’ correlation coefficients gives a total
power or ‘score’ for the incident slowness gridpoint being tested:

P(sx , sy) =
∑
i, j

Cobs
i j (�ti j ). (3)

We show a synthetic example of this process in Fig. 2. An array is
used that is intended to mimic a subset of 11 stations from the Park-
field Array in southern California, with a homogeneous distribution
of weak noise sources and a particularly strong noise source to the
North East (shown in Fig. 2a). Synthetic seismograms are created
using 2-D, analytic, Rayleigh-wave Green’s functions, generating
roughly four and half hour’s worth of noise filled with signals of
random phase, as described by Fichtner et al. (2017). These analytic
terms account for source-to-station 2-D geometric spreading, a con-
stant Rayleigh wave speed of 3 km s–1, and a constant attenuation
of Q = 100. We expect our array is able to resolve wavelengths
comparable to the average interstation distance of roughly 6 km.
Given the constant model wave speed of 3 km s–1, this translates
to a 2-s period. We ultimately use a bandpass filter for our signals
between 0.18 and 3.3 s period to cover a range of the various in-
terstation distances present in our sample array. Ultimately, higher
or lower frequencies might be resolveable as well; the exact array
geometry, widest-point aperture and interstation distances will all
play a role in the final array resolution and array response (Rost
& Thomas 2002; Gal & Reading 2019). The resulting beamform
image is shown in Fig. 2(b), where we see strong arrivals at surface
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Figure 2. An example array is shown in panel (a), along with the synthetic noise sources. Each grey pixel represents a randomly distributed background noise
source, with a darker, denser, 8-times stronger noise source in the northeast. In panel (b), the resulting beamform image is shown. A small black dot in panel
(b) marks the location of the expected plane wave azimuth and slowness.

wave speeds generally, with a stronger hotspot to the northeast as
expected.

We note that many other flavours of beamform techniques exist,
including more commonly used methods that directly sum time-
shifted traces (Bucker 1979), methods that operate in frequency
domain and wavenumber space (van Veen & Buckley 1988), some
methods which include autocorrelations for energy scaling and
those that do not, adaptive methods for higher-resolution recov-
ery such as the Multiple Signal Classification (MUSIC) algorithm
(Schmidt 1986) or Multi-rate Adaptive Beamforming (MDVR,
Capon 1969), methods which exploit 3-component polarizations
(Juretzek & Hadziioannou 2016; Löer et al. 2018) and even neu-
ral network or other machine learning applications (Ozanich et al.
2020). Additionally, we note that the approach described above is
not the most computationally efficient; it would be smarter to shift
all traces to a common reference point rather than loop through
every station–station combination. Methods operating in frequency
domain may also be more computationally efficient, since a single
correlation matrix can be constructed before gridsearching and ap-
plying phase shifts. In that case, multiplying in a set of complex
phase advances or delays can be compactly expressed as projection
onto a set of steering vectors (van Veen & Buckley 1988; Rost &
Thomas 2002). While each method will have its own advantages
and disadvantages, the time-domain method described in this sec-
tion is the most directly relatable to what will come in the rest of
the paper.

2.2 Extension to backprojection and MFP

Before moving on to finite-frequency kernels, we note that the cross-
correlation beamforming described above may instead be mapped
to a spatial domain. That is, not only to describe in which direc-
tion the signals are travelling, but where they might have originated.
One approach to accomplish this is backprojection (Ishii et al. 2005;
Walker & Shearer 2009; Meng et al. 2012; Fan & Shearer 2015),
where generally one would use a beamform heatmap to determine
source azimuths (as above), and then shoot rays along a great-circle
path, or some other ray-theoretical path derived from a velocity
model, to ultimately point back towards some location in space.
This has become a popular tool for imaging fault-rupture dynam-
ics, since in this case an endpoint for the backprojected energy is
a well-established fault plane. Approaches to locate sources in the

Figure 3. Estimating time-shifts can also be mapped directly onto a spatial
domain. Here, a grid search over x–y coordinates facilitates time-shifts that
need not assume plane-wave incidence. Even more complex velocity models
and ray tracing could be used (Gal & Reading 2018).

subsurface are also regularly used in the seismic exploration lit-
erature, and specifically time-reversal migration approaches bear
similarity to the others mentioned here (Song et al. 2019).

Another variation is MFP (Baggeroer et al. 1988; Kuperman &
Turek 1997). In this case the time delays, �tij, may be defined based
on traveltimes from gridpoints in an actual, spatial domain, as in
Fig. 3. Compared to eq. (1), we now assume a constant velocity
model and estimate the time delay for a given noise source location,
x, as:

�ti j = ||x − xi ||
v

− ||x − x j ||
v

. (4)

Here, symbols ||.|| denote the vector norm for our 2-D example, but
3-D noise sources and station locations could also be used. In this
simple case we assume a constant propagation velocity, v, although
an arbitrarily complex velocity structure could be accounted for in
estimating these �tij’s. For example, this could be important when
considering the velocity contrast between continental and oceanic
crust (Gal & Reading 2018). By not restricting a search to plane
waves, the approach is especially useful when sources are relatively
close, or even inside the array (Corciulo et al. 2012; Chmiel et al.
2016; Sergeant et al. 2020). Although the MFP algorithm calculates
a time-shift, �tij, in a different way, the rest of the algorithm remains
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similar: grid search through the domain, define and apply a given set
of time-shifts, and finally measure the resulting correlation scores.

Fig. 4(a) shows an example of this for a two-station array. We
show this first for the two-station case since the resulting hyperbolas
may be easily interpreted and understood. This uses only a single
noise source to the northeast, marked by a red star. If multiple
station pairs were present, as in the three-station case of Fig. 4(b),
the resulting sum of such hyperbolas better localizes the source.

As with beamforming, we note again that many flavours and vari-
ations of such MFP or backprojection techniques exist in literature,
sometimes by other names such as the source scanning algorithm
by Kao & Shan (2004) or a cross-correlation backprojection by Aso
et al. (2017), or by using different methods for estimating the path
effect of propagation such as the use of waveform templates by
Hawthorne & Ampuero (2017). As with beamforming, many MFP
algorithms will operate in frequency domain and apply time-shifts as
phase delays or advances only after correlating; the resulting image
is theoretically unchanged from the time-domain version. As with
beamforming, MFP algorithms might incorporate multiple compo-
nents and constrain wave types (Gal & Reading 2018; Xu et al.
2019), include various pre-processing steps (Aso et al. 2017), alter-
natively measure time-shifted envelopes or other metrics (Gal et al.
2019), or use various compressive sensing or Bayesian-formulated
regularization to improve the final image (Gemba et al. 2017a, b).
The applied time-shifts are more generally referred to as a ‘replica
vector’, which could in principle account for more complexity than
a simple time-shift; relative amplitude terms between the stations
(Corciulo et al. 2012), or even a full synthetic Green’s function
might be used to account for additional complexities (discussed
further in Section 3.2 and the Appendix).

While we focus on the relatively simple 1-component, constant
velocity MFP algorithm described above for the purpose of this pa-
per, we will sometimes consider all variations of the method to be
under the same class of algorithms as beamforming: all are primar-
ily data-processing driven (i.e. without an explicit misfit function
between observations and synthetics), all are based on the time-
shifting observed signals (or otherwise modifying the shape and
amplitude), and all finally measure success of that shifting under
one metric or another. Casting such algorithms into a single group
should not diminish the advantages of a diverse body of research,
rather on the contrary it is a motivation to recognize that they all
relate; nuanced advantages of a given algorithm might be readily
incorporated into others.

3 A D E S C R I P T I O N O F
F I N I T E - F R E Q U E N C Y K E R N E L S

The following is meant to build an intuitive picture of a finite-
frequency kernel-based inversion for noise sources, starting from
the MFP steps described above. We refer the reader to work by
Tromp et al. (2010), Hanasoge (2013), Ermert et al. (2017) or
Sager et al. (2018) for a full and mathematically rigorous formu-
lation of the method, to Hanasoge (2013) for a detailed numerical
demonstration, and to Datta et al. (2019), Ermert et al. (2017) and
Sager et al. (2020) for real-data applications on a local and global
scale, respectively. We note that unlike previous derivations, we
specifically distinguish between steps that are required for the al-
gorithm to function (described first) and those which are used only
for computational efficiency (described later).

3.1 Step one: change the order of operations

The result described above for MFP may be achieved, even if we
change the order of processing steps. We might first collect the full
noise cross-correlation function (NCF) between each station, Cij(t),
drawing on a wide body of literature in ambient noise interferometry
(e.g. Shapiro et al. 2005; Larose et al. 2006):

Cobs
i j (�ti j ) =

∫
u(xi , t − �ti j ) u(x j , t) dt, (5)

=
∫

δ(t − �ti j )
[∫

u(xi , τ − t) u(x j , τ ) dτ
]

dt, (6)

=
∫

δ(t − �ti j ) Cobs
i j (t) dt, (7)

where xi and x j denote coordinate vectors of the observations.
That is, the measurement is the same whether we apply a time-shift
and then measure a zero-lag correlation, or if we compute a cross-
correlation function and then look at a certain lag time. The latter is
depicted in Fig. 5, where our noise correlation function is multiplied
by an example delta function to pick out a particular time on the
causal side. This result might not be surprising to practitioners
using MFP or beamform techniques in the frequency domain; the
correlation in frequency domain becomes a direct multiplication of
the two spectra and a phase shift (the replica vector in this case).

Now we may proceed as before, where a grid search over possible
noise sources in our spatial domain is performed. Again, the appro-
priate time delays are estimated. Technically, eq. (7) could be used
for any flavour of beamforming where a time-shift and correlation
score are used, but we will remain focused on the spatial domain
as used in MFP. We note that this �tij is only represented as a delta
function; no other information about wave propagation, scattering,
amplitude or frequency content is yet given. We also note that the
idea of using a ‘cross-correlation backprojection’ is implemented
by Aso et al. (2017), which also exploits this similarity in processing
steps.

The sum over all station-station pairs again gives the power for a
noise source at that location in space:

P(x, y) =
∑
i, j

∫
δ(t − �ti j (x, y)) Cobs

i j (t) dt. (8)

Here, we change the notation from a bold vector x for spatial loca-
tion to an explicit 2-D coordinate x and y to emphasize that we are
gridsearching through the spatial domain. The application of eq. (8)
results in a source localization identical to the MFP result shown pre-
viously in Fig. 4. Rearranging terms in this way is relatively trivial.
It is a key step in linking MFP and an iterative inversion framework,
however, since both approaches operate on Cobs

i j (t). From here we
describe a set of enhancements or modifications to eq. (8), leading
to the iterative, kernel-based inversion algorithm.

3.2 Modification: using a more specific window function

The delta function used in eq. (8) can be replaced with something
more generic. We can replace the delta function with a term Wij:

P(x, y) =
∑
i, j

∫
Wi j (t, x, y) Cobs

i j (t) dt. (9)

Here we note that our noise-source inversion framework will first
start to diverge from MFP. As described in Section 2.2, such a term
as Wij takes the place of a replica vector in MFP, and might represent
more than just a time-shift for the direct arrival. It might include
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Figure 4. Synthetic MFP example with two stations (panel a) and three stations (panel b). This uses only one synthetic source in the northeast (red star), and a
fewer number of stations, so the similarity to sensitivity kernels can later be more clearly seen.

Figure 5. One noise cross correlation and the appropriate delta-function
time pick. This shows the two separate pieces in eq. (7), where any pre-
computed noise correlation function can be used in beamforming or MFP.

an amplitude term (Corciulo et al. 2012), discussed further in the
Appendix, or it might even be a complete Green’s function capable
of modelling various wave types or arrivals in a complex velocity
model. The goal in any case is to describe, and thus correct for
any known physics that might affect the waveforms before the final
correlation score is measured.

In contrast, in the noise-source inversion framework that we are
moving towards, such synthetic Green’s function modelling is in-
troduced in a different way, as an explicit misfit function shown
in the next section. In that case, the main purpose of Wij will be to
define a finite window over which correlation scores should be mea-
sured. This windowing function is a natural extension of the delta
function previously used; given that our data is usually bandpassed
to a finite range of frequencies, a window of at least the minimum
observable wavelength might be used. Alternatively, in the case of
existing works using kernel-based inversion schemes as by Ermert
et al. (2017) or Sager et al. (2020), a windowing term was defined
to specifically encompass expected surface wave arrivals, since that
was the target of the modelling efforts.

3.3 Modification: include prior information

MFP offers no way to iterate, or to compare a model result back to
the data that generated it. The same may be said of plane-wave beam-
forming, which is perhaps why sophisticated imaging enhancement
techniques are desirable—only one image may be produced from
any set of data, and so any efforts to improve that image’s resolution
should be taken.

Here we may change this limitation. With some model of where
the sources might be, a synthetic wavefield may be calculated and
cross-correlations collected for these synthetic waveforms. A misfit

can be defined:

X (x, y) =
∑
i, j

∫ [
Wi j (t, x, y) Cobs

i j (t) − Wi j (t, x, y) C syn
i j (t)

]2
dt.

(10)

Here we use a least-squares misfit for simplicity, but other misfit
functions may be explored. The misfit used by Ermert et al. (2017)
is a measurement of energy asymmetry between the causal and
acausal branches in the noise-correlation function, rather than a
wiggle-for-wiggle time-domain correlation score. We note also that
the definition of a ‘physical model’ for calculating synthetics may
include a range of possibilities. The obvious choice is to map noise
sources on some physical domain as is done in MFP. Alternatively,
the synthetic model may state something about the content of wave
types (i.e. a given ratio between surface wave energy and body-wave
energy), or test the stationarity of the ambient noise field. The only
requirement is that one has a mechanism for generating synthetics
according to that hypothesis.

3.4 On gradients and iterating

Most importantly, eq. (10) offers a path forward to iterate. How-
ever, first our interpretation of the reason for our grid search in
space needs to change. In the traditional MFP framework, the grid
search gave us a method by which to define the time-shifts needed
for correlation. Now, instead, we must consider our grid search as
actually perturbing the strength of a source; we must actually place
(or strengthen) a source at that location in order to calculate syn-
thetics for comparison in eq. (10). Whether the misfit increases or
decreases indicates whether we should in fact increase or decrease
the strength of a source at this location. This spatially maps out our
gradient, which in seismology is often also referred to as a sensi-
tivity kernel in this first iteration. Strictly speaking, a gradient and
sensitivity kernel need not be defined on the same domain. In any
case, we have a measure of how to update our model, and after
applying that change we may repeat the process as many times as
desired.

An alternate interpretation of existing MFP algorithms is also
possible in the framework of eq. (10), first pointed out by Xu et al.
(2019) in their appendix C. If one considered a starting model with
absolutely no noise sources in the domain, the synthetic noise cor-
relations, Csyn

i j , will all be zero, and we are reduced to eq. (9). In this
hypothetical one-step-only iteration scheme, we update our model
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according to the computed gradient, and our final model or inter-
pretation ends there. Fig. 6 shows this final model. We note that it
differs from Fig. 4 in that an amplitude decay is observed because
injecting synthetic source perturbations at each gridpoint results in
synthetic seismograms subject to attenuation and geometric spread-
ing, but in all other regards the results here are identical to that of
the MFP results in Fig. 4. We finally note, again, that it would have
been possible to incorporate amplitude information into an MFP
algorithm, further making Figs 4 and 6 more similar, and discuss
this further in the Appendix.

Perturbing the source model and actually computing synthetic
seismograms offers other advantages. We already mentioned that
attenuation and geometric spreading will be taken into account
here, but even more realistic wave propagation effects may also be
observed if the velocity model used is complex enough. Effects like
frequency dispersion of surface waves, multipathing, and scattering
or reflections off of heterogeneities will all give complexities in
the synthetics that ideally will match the observed seismograms.
That is, in beamforming and MFP, such an effect as a reflection
or scatterer might often be misinterpreted as an additional unique
source (Ma et al. 2013), whereas here the waveforms would only
optimally match if both the direct arrival and some secondary arrival
were present in the synthetic waveform. Of course this assumes one
has already developed a good velocity model for a given region. The
application of an iterative scheme similar to eq. (10) to map noise
sources, alternating with full-waveform inversions to improve the
velocity structure, was precisely the goal described by Sager et al.
(2018).

In some sense, our comparison of the methods may be concluded
here as we have described a fully functioning inversion algorithm.
However, the approach described above would be quite computa-
tionally expensive. At least for ambient noise sources, the approach
would require generating synthetic noise sources at every location
in a spatial domain, separately, and for a long enough time window
to gain a stable estimate of the noise correlation functions. To find a
more efficient way, the approach of Tromp et al. (2010) directly cal-
culates the correlation wavefield and also uses adjoint techniques.
These are both described below, but we emphasize neither is strictly
needed to understand how an inversion might be performed.

3.5 Modification: calculate a synthetic correlation
wavefield for more efficiency

Generating synthetics for ambient noise cross-correlations can be
prohibitively expensive. An impulsive earthquake source can be
modelled with only the time steps needed for waves to propagate
across the domain, but generally computing NCFs requires aver-
aging time-series over multiple hours or days, and thus multiple
realizations of the random noise field. This section describes a more
efficient approach.

We start by writing the time-averaged correlation that we would
recover through traditional means, 〈C12〉. Following the approach
and workflow developed for active sources (depicted by the cartoon
in Fig. 7a), a random noise source N(x) is injected at xs and the
resulting noise field is recorded at the stations. According to the
representation theorem, the seismograms u(x) are in the frequency
domain given by:

u(x1) = G(x1, xs)N (xs), (11)

u(x2) = G(x2, xs)N (xs), (12)

where G(x, xs) denotes the Green’s function at x due to an impulse
in time acting at xs. For the sake of simplicity, we only present
equations for scalar wavefields and for two stations. One realization
C12 of the cross-correlation can then be computed according to:

C12 = u∗(x1)u(x2) = G∗(x1, xs)G(x2, xs)N ∗(xs)N (xs), (13)

where ∗ denotes complex conjugation. In order to obtain the ensem-
ble average C12, we repeat the whole procedure many times with
different realizations of the random noise sources and obtain:

〈C12〉 = G∗(x1, xs)G(x2, xs) 〈N ∗(xs)N (xs)〉, (14)

where 〈 · 〉 indicates ensemble averaging. In eq. (14) we assume that
changes of the Green’s functions in the course of the realizations
are negligible.

Since the Green’s functions do not change, using analytical so-
lutions, or the use of a database of precomputed Green’s functions
can save significant computation time. In addition, source–receiver
reciprocity can be exploited if the number of noise sources is larger
than the number of receivers. Although the computational burden
is thus reduced, we still have to compute multiple realizations. This
is typically only done for demonstration purposes (van Driel et al.
2015) or to advance our understanding of the underlying physics
(Cupillard & Capdeville 2010; Fichtner et al. 2017).

Recent studies (i.e. Tromp et al. 2010) offer a more efficient
alternative, drawing originally from the field of helioseismology
(Gizon & Birch 2002). We may skip the computation of raw, single-
station time-series and instead directly target the ensemble averaged
correlation function:

〈C12〉 = G∗(x1, xs)G(x2, xs) S(xs), (15)

where the term S(xs) is equivalent to the ensemble average
〈N∗(xs)N(xs)〉, that we ultimately want to describe spatially. In this
case we do not need multiple realizations or long time periods to
average; we directly describe a source power spectrum, S(xs), ev-
erywhere in space.

The steps to to directly model S(xs) according to eq. (15) are
described below:

(i) Choose a reference station, for example at x1 in Fig. 7(b),
and compute the Green’s function, G(xs, x1). That is, inject a delta
impulse in time at x1, as in Fig. 7(b).

(ii) Assuming source–receiver reciprocity, time reverse the
Green’s function and multiply it with the assumed power-spectral
density distribution at a given source location: S(xs). We thus have
G∗(x1, xs)S(xs).

(iii) Inject the result of the previous step as a source into a numer-
ical solver and simulate the wavefield. Sample the wavefield where
other receivers are located, in our example case at x2 in Fig. 7(c).
Following the representation theorem, the recording is then given
by G(x2, xs)

[
G∗(x1, xs)S(xs)

]
, which is equivalent to the ensemble

averaged correlation function in eq. (14).

With this recipe, we obtain a set of ensemble averaged correlation
functions that have a common reference station, only requiring 2
wavefield simulations, again only requiring the computation time
needed for one set of signals to propagate across the domain. We can
directly model the power-spectral density, without needing multiple
realizations or a very long time-series. The result is the ideal NCF
that many traditional realizations of the noise field would have
converged to.

The cartoons in Fig. 7 only illustrate an example with one noise
source. Eq. (14) can be generalized by adding an integral over
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(a) (b)

Figure 6. Synthetic sensitivity kernels with two stations (panel a) and three stations (panel b). As before, there is only one noise source in the northeast,
indicated with a red star. These kernels have the same shape and structure as the MFP results before, only the amplitude decays because of how synthetic
waveforms are analytically modelled.

Figure 7. A brute-force scheme is depicted in panel (a), where a given noise source is placed, waves recorded at two stations, and these are then cross-correlated
over many realizations of the wavefield (denoted by the angle brackets). This is representative of eq. (14). Panels (b) and (c) together depict the correlation
wavefield approach, described in text and eq. (15).

noise sources. The implicit assumption then is that neighbour-
ing noise sources are uncorrelated, a common assumption also
invoked for the principal of Green’s function retrieval (Wape-
naar 2004; Wapenaar & Fokkema 2006). While an approach us-
ing precomputed noise correlations might simply sum multiple
sources in Fig. 7(a), all non-zero sources in panel (c) would act
simultaneously.

3.6 Modification: adjoint techniques for more efficiency

We now have a method for efficiently calculating NCFs, for any
arbitrary model of sources. Now the question for our gradient-
based inversion is: how does a perturbation to a given individual
noise source affect the misfit between observed NCFs and synthetic
NCFs. In the most straightforward approach, we would only perturb
one source at a time to measure its effect, and again find ourselves
in a situation requiring simulations for every gridpoint.

The solution here is to exploit adjoint techniques in order to
find efficient expression for the computation of gradients. In the
following, we circumvent mathematical derivations and show how
the same expressions can be obtained based on heuristic arguments.
Previously, we showed that a gridpoint in space can be connected
to a particular lag-time location on the NCF. Now we consider the
other direction: that a particular time in the NCF will correspond
to a range of possible locations in space. For zero-lag, for example,
we may initiate a simulation from both stations, simultaneously, and
record where the two wavefields interact. This is shown in the top
row of Fig. 8, where the grey shaded region records every point that
can possibly contribute to the zero-lag time of the NCF between

these two stations. This zero-lag source kernel can be written as:

K (x) =
∫

G(x, x1, t) G(x, x2, t) dt. (16)

That is, although we simulated two Green’s functions, G(x, x1, t)
and G(x, x2, t), we assume that the sources could have instead been
initiated elsewhere in space and recorded at x1 and x2, that is we
invoke reciprocity for both receivers.

If, instead, we are interested in the causal surface wave traveltime,
�tSW, we can start the injection of the wavefield at the receiver (in
the sense of the modelling recipe above) at earlier times, at −�tSW,
while the wavefield at the reference station still starts at t = 0. The
region of interaction then maps out the stationary zone for surface
waves behind the second station, as in the bottom row of Fig. 8. In
this case the kernel can be written as:

K (x) =
∫

G(x, x1, t) G(x, x2, t + �tSW) dt. (17)

This is still missing two points, however. We previously stated
that we do not want merely a delta-function time-shift in the data,
but that we: (1) want to consider a more general window of the
NCF (Section 3.2) and (2) now are measuring a misfit between
an observed NCF and a simulated NCF, and thus want to know
what the amplitude of that misfit implies about the perturbation
(Section 3.3). We can achieve both points by replacing the delta
function with a source time function, f(t), to be injected into the
wavefield simulations above.

This f(t) solves the first problem above by being defined over some
finite length around the desired propagation time. To achieve the
second goal and measure what a given misfit implies about a possible
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Figure 8. Schematics for adjoint wavefields: Panels (a)–(e) depict successive time steps for the case of correlation energy at zero-lag time, and panels (f)–(j)
depict time steps for the case of energy in the surface wave time window. In both examples, the two circles (yellow and blue) represent the wave front coming
from either station, where they are currently interacting is highlighted in red, and the region mapped out by that interaction is indicated in grey.

perturbation to the model, we can define f(t) as a derivative of the
misfit function with respect to the synthetic correlation function. It
then directly carries information about how the increase or decrease
of a given Csyn

i j (t) will increase or decrease that misfit. Now, we can
give this generic function, f(t), its proper name: the adjoint source.
In the case of a least-squares misfit from eq. (10), for our two station
example, we are left with:

f (t) = 2 · [W12(t)Cobs
12 (t) − W12(t)Csyn

12 (t)], (18)

K (x) =
∫

f (−t) � G(x, x2, t) G(x, x1, t) dt, (19)

where � denotes a convolution, and we note that eq. (19) includes a
time-reversal of f(t). Recordings at the beginning of the simulation,
for instance, have not travelled far and they are thus only influenced
by noise sources close to the station. This also justifies the con-
vention used in Fig. 8(f), where the causal branch of surface wave
signals on the NCF are recovered by simulating the right Green’s
function starting at negative times.

We now have an expression to compute a source sensitivity ker-
nel that indicates how and which noise sources in space change our
misfit function. The description above does not constitute a rigor-
ous proof, and again we refer the reader to work by Tromp et al.
(2010) or others. We also emphasize that adjoint techniques are,
generally speaking, a broader mathematical tool generalizing the
transpose of a matrix. The interpretation of the adjoint wavefield
as a physical wavefield is not always possible nor strictly necessary
(Thrastarson et al. 2020; van Driel et al. 2020); the motivation and
physics described in this section are given rather as an after-the-fact
interpretation.

The goal of this section was not to reinvent adjoint methods or
a new inversion algorithm. The beamforming algorithm, MFP, and
kernel-based noise source inversion have all been formulated previ-
ously in other works. Rather, pointing out the similarity between a
purely data-driven algorithm like MFP or beamforming (eq. 9) and
the gradient-based inversion approach (eq. 10) opens the doors to
multiple ways either class of method may be improved.

4 C O M B I N I N G A P P ROA C H E S , I N S T E A D
O F J U S T C O M PA R I N G

The similarities between beamforming/MFP methods and kernel-
based noise inversions suggest numerous possibilities for the im-
provement of either method. In this section, we first emphasize
how beamform images can be immediately applied to any noise
interferometry study, and illustrate how beamforms can help one

understand various noise pre-processing strategies. Secondly, given
that the kernel-based inversion framework above allows for the in-
corporation of a starting model or prior knowledge, we show how
beamform heatmaps can be improved by accounting for this knowl-
edge. Thirdly, for the improvement of existing full-waveform noise
source inversion schemes, we show how beamform maps allow
for a more targeted and more effective selection of misfit win-
dows. Finally, we suggest that a sum over slownesses in beamform
heatmaps themselves may be used as a misfit for gradient-based
inversion schemes, allowing for the inclusion of more sophisticated
techniques to increase resolution (e.g. MUSIC).

Sophisticated MFP image enhancing approaches (e.g. Gemba
et al. 2017b) might also be incorporated into the kernel-based
framework. While that might prove the most fruitful line of eventual
research, the suggestions here relate rather to the improvement and
incorporation of beamforming methods due to their low computa-
tional cost. As mentioned, beamforming generally requires assum-
ing signals are plane waves and thus distant from the array, meaning
their applicability is more limited than MFP or kernel-based noise
inversions.

4.1 Producing beamforms from noise-correlations

The fact that pre-computed noise correlation functions can be used
to construct beamform maps, as shown in Section 3.1, implies that
both views of the data can always be taken where one is already
considered. In any ambient-noise interferometry study where sta-
tion pairs are cross-correlated, it would be computationally trivial
to construct a beamform image as well, as is also emphasized by the
work of Seydoux et al. (2017). It is almost always an assumption
in noise-interferometry works that the wavefield is either perfectly
stationary, or at least scattered enough that reasonable traveltime es-
timates can be extracted (Lobkis & Weaver 2001; Tsai 2010). Some
authors have explicitly shown beamform estimates to demonstrate
this either is the case (e.g. Stehly et al. 2006; Seats et al. 2012;
Zhang & Yang 2013; Spica et al. 2018) or is not (e.g. Lehujeur et al.
2017), but this is not the norm.

Further, given that these beamform maps can be constructed
from noise correlation functions, one may include the effect of any
pre- or post-processing, as is also shown by Seydoux et al. (2017)
and Girard & Shragge (2020) for beamforms, and by Aso et al.
(2017) for backprojection. Generally it is believed that signal pro-
cessing of either the individual noise pairs or the final NCF will
reduce the effect of non-stationary, impulsive sources (Bensen et al.
2007). Fig. 9(a) shows our same raw beamform as before, and a
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Figure 9. Using processed waveforms: one-bit normalization, spectral whitening and averaging of the causal and acausal branches.

version of the beamform constructed from NCF’s that include var-
ious processing. Panel (b) uses data where one-bit normalization
was applied, and we find for this synthetic data that it actually does
very little to improve the stationarity of the noise wavefield. Panel
(c) uses spectral whitening, and while we do see that it reduces the
effect of the strong noise source in the northeast, it is also more
sharply pixelated, implying we have potentially decreased the sta-
tionarity at certain other slownesses. Panel (d) uses an averaging
of the causal and acausal branches; while the relative strength of
the noise source in the northeast is somewhat reduced, we also find
a mirrored version of the strong source to the southwest, which
might not be desirable. We also refer readers to work by Ficht-
ner et al. (2017) for an example of how these processing meth-
ods can affect source or structure spatially. Finally, we emphasize
that the data used here are entirely synthetic and the application
of various pre-processing strategies to real data may look quite
different; the point is rather that such maps can be used to un-
derstand the effects of these various processing schemes on any
data set.

We thus advocate that beamform maps should be regularly in-
cluded in noise interferometry studies, and further that any beam-
form map should include identical pre-processing and station-pair
selection as the interferometry. If certain station pairs are removed
due to low signal-to-noise ratios (SNR), this can also be reflected in
the accompanying beamform image. Such pre-processing or SNR
criteria are often well justified; our point here is that with a database
of processed noise correlations, it requires virtually no additional
computational effort to produce a corresponding beamform im-
age. Similarly, if it was believed that noise sources may be present
very near to the array or within the array bounds, an MFP al-
gorithm could also use these precomputed and processed noise
correlations.

4.2 Priors on beamforming

We previously discussed how the standard MFP algorithm may be
considered analogous to the more complete gradient-based inver-
sion scheme, mainly by being explicit about the fact that an MFP
starting model contains no noise sources. The same may be said of
beamforming in slowness or wavenumber domain, assuming a start-
ing model of zero energy everywhere. Eq. (20) below is analogous
to eq. (10) earlier, where we calculate waveform misfits between the
data correlations and our model correlations, but now we consider
possible incident slownesses:

X (sx , sy ) =
∑
i, j

∫ [
Wi j (t, sx , sy ) Cobs

i j (t) − Wi j (t, sx , sy ) C syn
i j (t)

]2

dt. (20)

We see that if a synthetic starting model consisted of zero noise
sources, and thus zero correlation in each Csyn

i j (t), this misfit re-
duces to the same as a standard correlation beamformer (e.g. eq.
9). However, assuming a prior model consisting of absolutely no
noise sources is actually a rather strong statement, given that one
is generally using a beamforming method specifically to search for
noise sources.

Rather, what most researchers in the interferometry commu-
nity often assume is the presence of isotropic and stationary noise
sources distributed across the Earth’s surface (Aki 1957; Boschi &
Weemstra 2015). This is a contradiction—that researchers would as-
sume isotropic noise sources for one method and implicitly assume
zero noise sources for another.

To account for isotropic noise sources on the Earth’s surface
as a prior model, we can specify terms in eq. (20). Cobs

i j is our
observed data correlations (in our case synthetically generated for
the example), and the beamform resulting from this is shown in
Fig. 10(a). Here, the noise sources consist of a randomly distributed
sample of weak noise sources, with a stronger noise source to the
northeast, as in our original Fig. 2(a). The term Csyn

i j will hold
our prior knowledge or assumption of a homogenous background
without the knowledge of the stronger source. That is, we compute
synthetics for a noise wavefield specifically without any knowledge
of a stronger source imprinted; the resulting beamform is shown in
panel (b), where we see only an even ring of sources arriving from
all directions. The misfit between the data and our prior model,
calculated as in eq. (20), is shown in panel (c). Even without further
iterations, being explicit about assumed prior knowledge is already
greatly beneficial.

Normally, under an iterative scheme, one would take this misfit
and the knowledge gained, update our model, and repeat the process.
In this case we do not yet have a method by which to take our
beamform map and return to the noise sources on some spatial
domain; the application of eq. (20) works only for this first iteration.
Works by Yao & van der Hilst (2009) and more recently Lehujeur
et al. (2017), however, do propose a framework in which to forward
model noise correlations directly from a beamform-style map, and
the incorporation of such a method to eq. (20) could be a topic of
future work.

4.3 Intelligent windowing

With an explicit connection between beamforming and gradient-
based inversions, we can use beamforming as a tool to steer
and guide more sophisticated misfit definitions. Current inversion
schemes (e.g. Ermert et al. 2017; Sager et al. 2020) often restrict
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Figure 10. Panel (a) shows the beamform image directly from observations as in Fig. 2(b). Using a randomly generated, isotropic distribution of ambient noise
sources will result in a ring of slownesses as in panel (b). If we used those NCFs as prior knowledge and subtracted from the observed correlations we are left
with an improved recovery, shown in panel (c).

the misfit computation to a time-window of the NCF near the ex-
pected arrival time of surface waves, as in the red-shaded regions
of Fig. 11(b). This gives a reasonable result for station–station pairs
oriented in such a way that they were pointing towards the noise-
source of interest, as in ‘Station Pair 1’ in Figs 11(a) and (b). This
windowing ignores other spurious signals in the correlation func-
tion, however. If a noise source is oriented such that the signal might
arrive at both stations simultaneously (i.e. near zero-lag time, as in
‘Station Pair 2’, panel c), this information is simply ignored and
lost. The final beamform image in Fig. 11(d) only uses information
from these restricted time windows, and as a result the localization
of the noise source is poorer.

This could be used to our advantage, however, if a particular di-
rection or beamform ‘hotspot’ is known to be of particular interest.
There may be physical situations, for example, where noise sources
are expected in a particular ocean basin, and thus only in a partic-
ular direction relative to the array. Defining an azimuth range and
slowness will restrict the possible windows over which a correlation
score is computed, thus improving the misfit estimates in iteration
by reducing effects from aliasing, scatterers, and potentially other
effects. Figs 11(e)–(g) illustrates this, where a box is drawn around
a target slowness, and this box is used to more intelligently pick
time windows for later use as a misfit in a finite-frequency inversion
scheme. As expected, the strongest signals in each NCF fall within
the blue shaded regions.

This idea relates to work by Retailleau et al. (2017), who observed
consistent spurious arrivals in the noise-correlation functions. They
found that these can be used to image sources ‘off-axis’ of the
two arrays of stations used. By gridsearching over a spatial do-
main covering the Atlantic ocean, they estimated the expected time
windows in the correlation functions and compute a more effective
slant-stack. What we propose here is similar: by first performing a
beamform of raw data, a dominant noise source will be more easily
noted and then researchers can consciously choose to include or
exclude that source in misfit definitions. This suggested approach
of using beamforms is somewhat restrictive however, assuming all
sources are outside the array and signals are simple plane waves,
whereas the work of Retailleau et al. (2017) remains more flexible
and can image sources between any given station pair.

We also note that work by Seydoux et al. (2017) suggests a sim-
ilar point, though for different purposes. They have the goal of
improving ambient-noise correlation functions for interferometry,

and point out that first computing a beamform is beneficial. They
show that conditioning of the beamform image, achieved by nor-
malizing eigenvalues of the coherence matrix to display a more
isotropic distribution of noise sources, also results in individual
noise-correlations functions that are cleaner and easier to interpret
traveltimes from. In this case, rather than using windows of the
beamform image only to guide where one should look in a correla-
tion function, the correlation functions are themselves modified in
some intelligent (though non-linear) way.

4.4 Beamforms as misfits

Another future approach may be to use the beamform image itself
as a misfit. All of the iteration schemes described thus far compared
NCF waveforms on a station-pair to station-pair basis, using some-
thing like a least-squares misfit (eq. 10) or the asymmetry score of
Ermert et al. (2017). The difference between a synthetically pro-
duced beamform map and an observed beamform map is another
possible misfit:

X =
∑
sx ,sy

[∑
i, j

∫
Wi j (t, sx , sy ) Cobs

i j (t) dt −
∑
i, j

∫
Wi j (t, sx , sy ) C syn

i j (t) dt

]2

.

(21)

A potential advantage of this approach comes how aliased fea-
tures can be interpreted. Aliasing is a common problem both in
full-waveform correlation misfits, where a 2π cycle shift can give
a high correlation score, and in beamform images where multiple
hotspots may appear for the same reason. At least with the creation
of beamform images, however, it may be possible to either clean and
thus better constrain image features (via MUSIC, for example), to
incorporate constraints for wave type using 3-component observa-
tions, or to more intelligently select a region of the beamform image
to be concerned with (as in Fig. 11). Other image comparison tools
also exist that can score similarity based on common features, even
if the individual pixels of one image do not perfectly line up with
those of another (Wang et al. 2004; Araya-Polo et al. 2018). We note
that in this case the interpretation of beamform heatmaps as plane
waves is not important; even if a source is relatively close to the
array and the plane-wave assumption is violated, we are anyways
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Figure 11. Panel a depicts our array of stations, showing the direction of the dominant noise energy (black arrow) and highlighting two station-station pairs.
Panels (b) and (c) show how a typical inversion scheme might be limited to surface wave windows, and the resulting degraded beamform image with this
restriction is shown in panel (d). No beamformer to our knowledge operates this way, but it demonstrates how data would be lost if windows were too restrictive.
In contrast, if we instead use full waveforms to beamform and select a hotspot of interest in the white dashed box in panel (e), we can more effectively window
energy in panels (f) and (g).

only using the beamform heatmap as a transformation of the raw
time-series.

Additionally, the weighting of information from a beamform im-
age may be different: for current inversion schemes where a misfit
is based on waveform differences, all parts of the used waveforms
are considered equal. In a typical beamform image, however, pixels
near the center (near-zero slowness space) represent more signif-
icant changes in incident velocity as compared to pixels near the
edges. This may or may not be desirable, depending on the problem
of interest.

5 C O N C LU S I O N S

We show in Sections 2 and 3 that a correlation-based beamforming,
backprojection or MFP algorithm can be considered very similar
to a gradient-based inversion scheme. The primary difference be-
tween these two classes of methods comes in the generation of
an explicit prior starting model (or lack thereof). For many au-
thors and applications, it may be that the purely data-driven ver-
sions of beamforming and MFP are computationally superior and
easier to implement, but at least understanding the connection
should be useful towards the development of better algorithms.

Again, the beamforming and backprojection communities have
spent considerable effort exploring image enhancement techniques
(e.g. MUSIC, MDVR), and so it follows that such methods might
be incorporated into kernel-based inversion schemes in the near
future.

The figures and equations presented here exploited only the
vertical component of motion, but the use of horizontal mo-
tions has been explored by each of the subdisciplines discussed
here: for example in beamforming by Juretzek & Hadziioannou
(2016), in Matched-Field Processing by Gal & Reading (2018)
and even in finite-frequency source inversions by Xu et al. (2019).
If anything, the fact that each of these three research com-
munities have separately developed multicomponent frameworks
(with relatively little citations across disciplines) further empha-
sizes the importance of understanding the connection between
them.

Section 4 specifically outlines several ways in which this con-
nection may be immediately useful. Beamformer algorithms can be
adapted to directly use noise-correlation functions for both compu-
tational efficiency and for the purpose of incorporating or testing
various pre-processing methods. Beamforming algorithms might
also benefit from the explicit definition of a prior starting model.
Going in the other direction, a standard beamform that uses all
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possible data (e.g. looks in all possible directions) might be used
to more selectively window noise-correlation functions. Finally, we
point out that beamform heatmaps themselves might be used di-
rectly as misfits, though further testing and demonstrations with
real data will be the subject of future work.
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A P P E N D I X : O N A M P L I T U D E S I N M F P

The MFP algorithm presented in the main text only estimates
relative delay times between stations, and does not include any
term for amplitudes. In contrast, the sensitivity kernels presented
in Fig. 6 are constructed using a synthetic forward model which
does, by design, model both geometric spreading and an attenu-
ation term. We show here that it is possible to include a relative
amplitude term in the MFP algorithm through a more complex
replica vector, as has been explored by Corciulo et al. (2012) and
others.

As described in the main text, the basic MFP algorithm performs
a grid search through possible source locations in space. A �tij

is determined as the difference in traveltimes for a given pair of
stations i and j. We assume a homogeneous velocity model and
straight rays, but more sophisticated ray tracing algorithms can
be used (Gal & Reading 2018). Corciulo et al. (2012) describes
an amplitude decay term as well; the distance a wave propagated
can be directly mapped to a geometric spreading and attenuation
term:

Ai =
√

2v

πωri
exp

(−ωri

2vQ

)
, (A1)

where v is the assumed velocity, ri is the distance from proposed
source to a receiver and Q is an attenuation quality factor. The first
term represents a decay according to 2-D surface wave geomet-
ric spreading and the second term accounts for attenuation. Again,
in this MFP framework, we grid search through every location in
some spatial domain to test the possibility of a source there. We note
that this varies slightly from the equation used by Corciulo et al.
(2012), but instead directly matches the 2-D analytic Green’s func-
tions used for our synthetic modelling (Fichtner et al. 2017). This
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Figure A1. Panel a shows the stations (triangles) and source (circle) used for synthetic tests. Panel (b) shows the time-shift-only version of the MFP algorithm,
panel (c) uses an amplitude correction but also the standard normalization of correlation coefficients in each element of the grid search, and panel (d) uses an
amplitude term on the signals with no normalization. Given that the units in each case are different and unimportant, the colourscale is arbitrarily normalized
for each.

amplitude term, along with a delta-function time-shift, constitutes
the replica vector and might be substituted for what we called Wij in
eq. (9):

P(x, y) =
∑
i, j

∫
δ(t − �ti j (x, y)) �Ai j Cobs

i j (t) dt, (A2)

where �Aij is the difference in amplitudes computed above, and
�tij is the difference in expected traveltimes.

This amplitude term, Ai might be used in different ways, as shown
in Fig. A1, where we use the same arrangement of 11 stations, but
with a single Gaussian source within the domain of the array (panel
a). The application of a grid search MFP with only time-shifts, as
described in the main text, is shown in panel (b). The first use of an
amplitude term might be to correct a signal’s amplitude, along with
applying time-shifts, but then still normalize the set of correlations
by the total observed energy (panel c). This will preserve rela-
tive amplitude information, and can be useful in achieving higher
resolution while still assuming distant sources are equally likely
as nearby sources. A second approach would be to apply the am-
plitude correction, Ai directly to each unnormalized observation,

effectively as if each signal was to be both originating and observed
at some location (panel d), which now quickly excludes the pos-
sibility of sources further away. In this case, eq. (A2) needs to be
further altered to multiply amplitudes for both stations, rather than
a define a difference in amplitudes; many MFP works anyways use
a formalism of Bartlett processors to apply replica vectors acting
on both stations in this way (e.g. Baggeroer et al. 1988; Corciulo
et al. 2012).

With the introduction of both timing and amplitude information,
we already see how a full synthetic Green’s function might be used
to account for an even more complex velocity structure than the one
considered here. For example, the term for a delta function might
be relaxed to include any number of neighbouring signals from dif-
ferent wave types or different arrivals, reflections, etc. Eq. (A2) still
differs from the least-squares misfit defined for the noise-source in-
version framework (eq. 10), in that the physics of wave propagation
are included in the replica vector instead of a separate Csyn

i j term.
This is perhaps more akin to methods in reverse time migration,
that convolve a Green’s function to sharpen recovery (e.g. Nakata
& Beroza 2016).
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